Errata

Title & Document Type: 5383A Frequency Counter Operating and Service Manual

Manual Part Number: 05383-90005

Revision Date: September 1976

HP References in this Manual

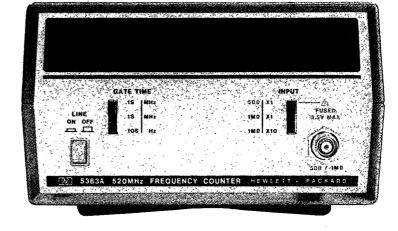
This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:


www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

FREQUENCY COUNTER 5383A

FREQUENCY COUNTER 5383A

OPERATING AND SERVICE MANUAL

SERIAL PREFIX: 1628A

This manual applies directly to HP Model 5383A Frequency Counters having serial number prefix 1628A.

NEWER INSTRUMENTS

This manual, with enclosed "Manual Changes" sheet, applies to HP Model 5383A Frequency Counters having serial number prefixes as listed on the "Manual Changes" sheet.

OLDER INSTRUMENTS

For serial prefixes below the serial prefix shown above, refer to Section VII for manual backdating instructions.

CopyrightHEWLETT-PACKARD COMPANY19755301 STEVENS CREEK BLVD., SANTA CLARA, CALIF. 95050

MANUAL PART NUMBER 05383-90005 Microfiche Part Number 05383-90006

Printed: SEP 1976

TABLE OF CONTENTS

Section	Page	!
I	GENERAL INFORMATION1–11–1. Introduction1–11–3. Instrument Description1–11–5. Accessories and Options1–11–8. Instrument Identification1–11–11. Microfiche Number1–21–13. Recommended Test Equipment1–21–15. Specifications1–2	
11	INSTALLATION2-12-1.Introduction2-3.Unpacking and Inspection2-5.Storage and Shipment2-8.Line Voltage Selection2-11.Mounting2-2	
111	OPERATION3-13-1.Introduction3-3.Controls, Connectors and Indicators3-5.Measurement Techniques3-7.Ratio Measurements (Standard Counter Only)3-10.Operator Checks3-3	
IV	THEORY OF OPERATION4-14-1.Introduction4-3.Functional Description4-5.Input Circuits4-7.Balanced Input Amplifier4-7.Bo and Main Gate Circuits4-9.TBO and Main Gate Circuits4-11.Scan Timing Circuits4-15.Multiplexed Display Function4-17.Leading Zero Blanking4-19.Unique Integated Circuits	
V	MAINTENACE5-15-1.Introduction5-3.In-Cabinet Performance Check5-5.Adjustments5-5.Adjustments5-7.Balanced Input Amplifier5-5.5-10.5 Standard Time Base Oscillator Adjustment5-5.5-13.Option 001 Time Base Oscillator Adjustment5-6.5-16.Instrument Access5-18.Troubleshooting5-9	
VI	REPLACEABLE PARTS6-16-1. Introduction6-16-4. Ordering Information6-16-6. LED Display Digit Ordering Information6-96-8. Replacement Hardware for Mounting U27 Regulator6-9	
VII	MANUAL CHANGES7-17-1. Introduction7-17-3. Manual Changes7-17-5. Newer Instruments7-17-7. Manual Backdating for Older Instruments7-1	
VIII	SCHEMATIC DIAGRAMS	

LIST OF TABLES

Table	Page
1–1. 1–2.	Recommended Test Equipment1-2Specifications1-3
3–1.	Measurement Techniques 3–2
4–1.	Sample and Display Timing 4-4
5–1. 5–2.	In–Cabinet Performance Check 5–1 Test Counter Set–Up 5–7
6-1. 6-2. 6-3. 6-4. 6-5.	A1 Main Board Assembly Parts List6-3A2 Display Board Parts List6-6Miscellaneous Parts List6-7Manufacturers Code List6-8LED Display Digit Part Numbers6-9
7–1.	Manual Changes
8–1.	Major Signal Definitions 8–3

LIST OF FIGURES

Figure	Page
1–1.	Model 5383A Frequency Counter 1-1
2–1.	Power Cord Connector for 240–Volt Operation 2–2
2–2.	Rack Mounting Instructions 2-2
2-3.	Rack Mounting Kit 2-3
3–1.	Front Panel and Internal Controls, Indicators and Connectors
3–2a.	Rear Panel Operating Controls and Indicators 3-7
3–2b.	Rear Panel Operating Controls and Indicators (Continued)
4–1.	Simplified Block Diagram 4-3
4-2.	Scan Timing Waveforms 4-5
4-3.	Update Function
4-4.	10S/Hz Leading Zero Blanking Function 4–7
4-5.	Variable Time Base Counter A1U11 4-8
4-6.	Hex Multiplexed Counter A1U18 4-9
5–1.	Display Function Troubleshooting Flowchart
5-2.	Counter Function Troubleshooting Flowchart
5-3.	Multiplexed Display Bus Monitoring 5-12
8–1.	Schematic Diagram Notes
8-2.	A1 Main Board Schematic Diagram (Standard and Option 001) and Part of A2 Display Board
8–3.	Part of A2 Display Board Schematic Diagram

۳ ۲:

SAFETY CONSIDERATIONS

GENERAL

This is a Safety Class I instrument. This instrument has been designed and tested according to IEC Publication 348, "Safety Requirements for Electronic Measuring Apparatus".

OPERATION

BEFORE APPLYING POWER verify that the power transformer primary is matched to the available line voltage and the correct fuse is installed (see Section II, Paragraphs 2–8 through 2–10). Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

SERVICE

Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure safe operation and to retain the instrument in safe condition. Service and adjustments should be performed only by qualified service personnel.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

This symbol: 2, which appears on the instrument in several places means: Read the instruction manual before operating the instrument. If the instrument is operated without reading the instructions, it may not operate correctly.

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1–2. This section of the manual gives a description of the instrument, information on instrument identification and available options, and complete specifications.

1-3. INSTRUMENT DESCRIPTION

1-4. The HP Model 5383A (see Figure 1-1) is a direct-counting frequency counter that has a range of 10 Hz to 520 MHz. Nine display digits provide a resolution of one Hz per second for inputs up to 520 MHz. Front panel controls allow a selection of gate times, input impedances, and attenuators. A rear panel connector and associated selector switch allow either an external time base oscillator input, or monitoring of the internal time base oscillator. When the optional temperature compensated crystal oscillator (TCXO) is installed, the rear panel connector serves only as a time base monitor. In addition, a rear panel power selector switch permits the 5383A Counter to operate with line voltages ranging from 90V to 252V (line frequency range: 48 to 440 Hz).

1-5. ACCESSORIES AND OPTIONS

1-6. Two accessories are available for mounting the 5383A counter onto the user's rack. The 10851A kit permits the mounting of a single counter, while the 10852A kit is used for mounting two counters in a side-by-side configuration. Refer to Section II for detailed rack mounting kit information.

1–7. Option 001 provides a more accurate and stable time base oscillator. This Temperature Compensated Crystal Oscillator (TCXO) installation modifies the rear panel so that the connector is used only as a MONITOR output. As a result, an external standard (i.e., time base) cannot be applied to the Option 001 counter.

1-8. INSTRUMENT IDENTIFICATION

1–9. Hewlett-Packard uses a 2-section, 10-character serial number (0000A00000) mounted on the rear panel to identify the instrument. The first four digits are the serial prefix and the last five digits refer to the specific instrument. The alphabetical character identifies the country of manufacture. If the serial prefix on your instrument differs from that listed on the title page of this manual, there are differences between the manual and your instrument. Any lower serial prefixes are documented separately in this manual, and higher serial prefixes are covered by a manual change sheet included with the manual.

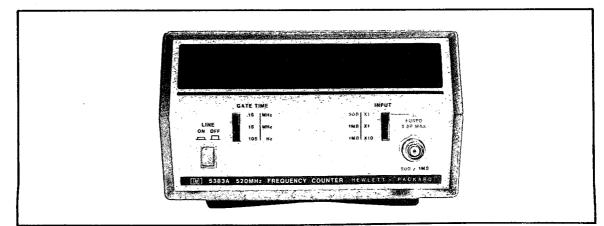


Figure 1–1. Model 5383A Frequency Counter

1-10. The printed circuit boards within the instrument are identified by a 2-section, 10-digit part number (e.g., 05383-60001) and a 4-digit series number (e.g., "SERIES 1508"). The series number identifies the electrical characteristics of the complete printed-circuit assembly. A replacement circuit-board assembly may have a different series number than the assembly originally supplied with the instrument. Therefore, when troubleshooting a circuit-board assembly, ensure that the series number on the schematic diagram matches the series number on the board assembly. If the series number of the assembly is lower than the number on the schematic diagram in Section VIII, refer to backdating information in this manual for change information. If the series number on the assembly is higher than the number on the schematic diagram, the change information is provided in a manual change sheet which is available from the nearest Hewlett-Packard Sales and Service Office.

1-11. MICROFICHE NUMBER

1-12. On the title page of this manual, below the manual part number, is the microfiche part number. This number may be used to order 4×6 transparencies of the manual. The microfiche package also includes the latest Manual Change Supplements as well as all pertinent Service Notes.

1-13. RECOMMENDED TEST EQUIPMENT

1-14. Table 1-1 lists test equipment which is recommended for confirming instrument specifications (i.e., in-cabinet performance tests), as well as troubleshooting and adjusting the instrument.

Equipment Type	Required Characteristics	Suggested Model	Use*	
Oscilloscope	50 MHz Bandwidth	HP 180A System	A,T	
Test Oscillator	10 Hz to 10 MHz 25 mV Output	HP 651B	P,T	
Signal Generator	10 MHz to 520 MHz 25 mV Output	HP 8654A	P,T	
DVM	0—25V Range	HP 970A	Т	
Frequency Counter	High stability 10 MHz frequency standard	HP 5328A with Option 10 or HP 5345A	А,Р	
50 Ohm Feedthru Connector	50 Ohm Termination	HP 11048C	P,T	

Table 1–1. Recommended Test Equipment

1-15. SPECIFICATIONS

1-16. Table 1-2 lists the 5383A specifications.

FREQUENCY RANGE: 10 Hz to 520 MHz
DISPLAY: Nine-segment LED digits
DISPLAY TEST: RESET function (activated with GATE TIME switch) illuminates all segments
of all digits.
INPUT IMPEDANCE: Three selections:
$50\Omega X1$ (nominal) — fuse protected
1 MO X1 (<40 pE shunt)

1MΩ X1 (<40 pF shunt) 1MΩ X10 (<40 pF shunt, attenuation factor of 10)

ATTENUATION: X10 in $1M\Omega$

SENSITIVITY:

INPUT Switch Position	Frequency Range	Sensitivity (RMS)		
50Ω X1	20 Hz to 520 MHz	25 mV		
1MΩ X1	20 Hz to 10 MHz	25 mV		
114127 X 1	10 Hz to 50 MHz	50 mV		

MAXIMUM INPUT:

INPUT Switch Position	Range	Maximum Input			
50Ω X1 (Fuse protected)	DC to 520 MHz	3.5V rms (+24 dBm)			
	DC to 40 MHz	200V (sum of dc + peak ac)			
1MΩ X1	40 Hz to 100 kHz	200V dc + 250V rms (ac)			
	100 kHz to 5 MHz	200V dc = $\frac{*2.5 \times 10^{7}$ V rms (ac Freq. (in Hz)			
	5 MHz to 520 MHz	200V dc + 5V rms (ac)			
	DC to 40 Hz	200V (sum of dc + peak ac)			
1ΜΩ Χ10	40 Hz to 1 MHz	200V dc + 250V rms (ac)			
114137 × 10	1 MHz to 50 MHz	$200V dc + \frac{2.5 \times 10^{8}V rms (ac)}{Freq. (in Hz)}$			
-	50 MHz to 520 MHz	200V dc + 5V rms (ac)			

ACCURACY: ±1 Count ± Time Base Accuracy

GATE TIME: Manually selected .1 second, 1 second, 10 seconds **RESOLUTION:** (Direct Count)

GATE TIME	Least-Significant Digit Value
.1s/MHz	10 Hz
1s/MHz	1.0 Hz
10s/Hz	0.1 Hz

OVERFLOW: LED indicator lamp shows display overflow.

RESET: Manual reset occurs when GATE TIME switch is between three normal positions.

*For example: The maximum signal level (when 1M Ω X1 input impedance is selected) for a 100 kHz input is:

 $\frac{2.5 \times 10^7}{100 \times 10^3} = 250 \text{V} \text{ (rms)} + 200 \text{V} \text{ dc}$

Table 1-2. Specifications (Continued)

STANDARD

TIME BASE DATA:

Time Base: 10 MHz (Xtal Oscillator)
<3 ppm per month due to aging
±2.5 ppm due to temperature variations between 0°C and 40°C
±0.5 ppm due to ±10% line (power) variation
Time Base Output: Frequency: 10 MHz Time Base
Voltage: 200 mV peak-to-peak into 50Ω
Control: Active when the INT/EXT switch is in INT position.
External Frequency Standard Input (rear panel): 10 MHz
Rear Panel Input: Sensitivity: 250 mV rms
Impedance: >500Ω
Maximum Input: 10V rms
Control: Internal/External rear-panel switch at EXT.
Ratio: Rear Panel Input, 100 kHz to 10 MHz

OPERATING TEMPERATURE: 0°C to 40°C **POWER REQUIREMENTS:** 100, 120, 220, and 240V rms +5 –10%; 48 Hz to 440 Hz; 30VA max. **WEIGHT:** Net: 2.2 kg (4.75 lbs). Shipping: 2.7 kg (6 lbs). **DIMENSIONS:** 89 mm H x 160 mm W x 248 mm D (3.5 in H x 625 in W x 9.75 in D).

OPTION 001 TEMPERATURE COMPENSATED XTAL OSCILLATOR

Does not provide rear panel input capability.

TIME BASE DATA:

12

Frequency: 10 MHz TCXO

Stability: <0.1 ppm per month due to aging ±1 ppm due to temperature variations between 0°C and 40°C

 ± 0.1 ppm due to 10% line (power) variation

Rear Panel Input: Not available with Option 001.

SECTION II INSTALLATION

2-1. INTRODUCTION

2-2. This section of the manual provides information about unpacking, inspecting, storing, and shipping the frequency counter.

2-3. UNPACKING AND INSPECTION

2-4. If the shipping carton is damaged, ask that the carrier's agent be present when the instrument is unpacked. Inspect the instrument for damage such as scratches, dents, broken switches, etc. If the instrument is damaged or fails to meet performance tests, notify the carrier and the nearest Hewlett-Packard Sales and Service Office immediately. Performance check procedures are located in Section V, and Sales and Service Offices are listed at the back of this manual. Retain the shipping carton and the padding material for the carrier's inspection. The Sales and Service Office will arrange for the repair or replacement of the instrument without waiting for the claim against the carrier to be settled.

2-5. STORAGE AND SHIPMENT

2-6. PACKAGING. To protect valuable electronic equipment during storage or shipment, always use the best packaging methods available. Your Hewlett-Packard Sales and Service Office can provide packaging material such as that used for original factory packaging. Contract packaging companies in many cities can provide dependable custom packaging on short notice.

2-7. ENVIRONMENT. Conditions during storage and shipment should normally be limited as follows:

- a. Maximum altitude: 25,000 ft.
- b. Minimum temperature: -40°F (-40°C).
- c. Maximum temperature: +167°F (+75°C).

2-8. LINE VOLTAGE SELECTION

2–9. The counter is supplied from the factory with the LINE VOLTAGE SELECTOR switches set for 120-volt. If any other supply voltage is to be used, change the rear-panel switch settings as follows:

- a. Using a small screwdriver, a pencil, or other suitable tool, set the LINE VOLTAGE SELECTOR switches on the counter's rear panel to the positions shown next to the desired voltage marking on the rear panel.
- b. Ensure that the correct fuse is installed. Use a Listed, 0.500 ampere, slow-blow fuse for 100-volt or 120-volt operation. Use a Listed, 0.150 ampere, slow-blow for 220-volt or 240-volt operation.

2-10. If the counter is to be used in the USA with a 240-volt, 60 Hz power source, use a power cord with a Listed connector of the type shown in Figure 2-1.

2-11. MOUNTING

2-12. The 5383A Frequency Counter is built to be portable, and may be used at any test bench position. Two kits are available for the user who desires to mount his counter on a rack. Kit 10851A permits one counter to be mounted in the center of a rack, while Kit 10852A allows the user to mount two counters, side-by-side on a rack. Figure 2-2 describes how to mount the counter onto the rack provided. Figure 2-3 shows these kits and provides a component parts list.

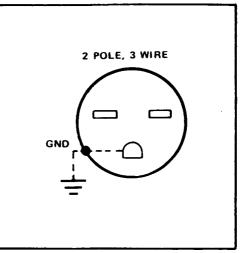


Figure 2–1. Power Cord Connector for 240–Volt Operation

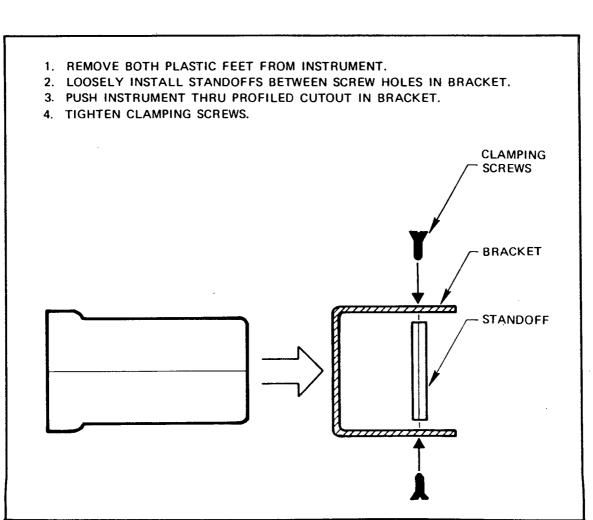


Figure 2–2. Rack Mounting Instructions

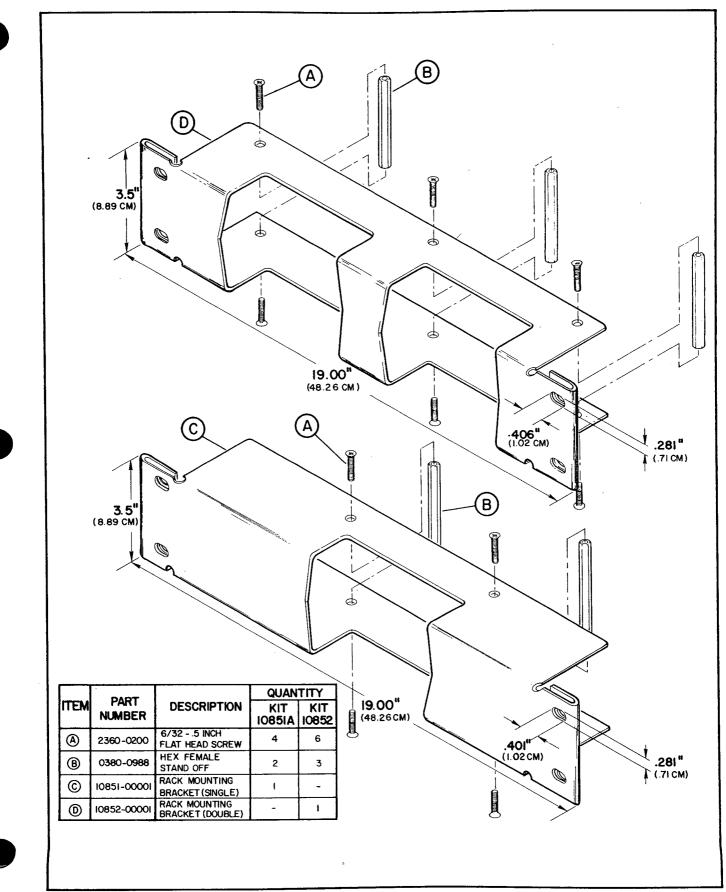


Figure 2–3. Rack Mounting Kit

SECTION III

OPERATION

3-1. INTRODUCTION

3-2. This section contains descriptions of the controls, connectors and indicators, measurement techniques, and operator checks.

3-3. CONTROLS, CONNECTORS AND INDICATORS

3-4. Figures 3-1 and 3-2 describe the operation of the 5383A controls and the function of the various connectors and indicators. The following paragraphs also provide operating guidelines and brief operator maintenance procedures for the frequency counter.

3–5. MEASUREMENT TECHNIQUES

3-6. Noise riding on the input signal can cause erroneous or unstable frequency measurements. Using the internal X10 attenuator, or external attenuators minimizes this problem. Proper selection of the input impedance also allows for stable and accurate frequency measurements. When there is a difference between the signal source impedance and the counter input impedance, ringing may appear on the signal. This ringing could interfere with, and degrade the capability of the counter. Knowledge of the signal source circuit characteristics and selection of compatible 5383A input impedances and attenuation permits proper measurements. Table 3-1 (page 3-2) provides some suggested measurement techniques to help the user obtain maximum use of the frequency counter.

3-7. Ratio Measurements (Standard Counter Only)

3-8. The standard counter will measure the ratio between the frequencies of two signals if one of the signals is applied to the rear-panel OSCILLATOR-EXT IN connector and the other signal is applied to the front-panel INPUT connector. (The Option 001 counter does not have an external oscillator input connector.) Be sure to refer to Table 1–2 for signal level and frequency limits. The displayed value is in units which represent the ratio of one frequency to the other as shown by the following formula:

 $\frac{\text{frequency at front panel INPUT}}{\text{freq at rear panel OSCILLATOR -EXT IN}} = \frac{\text{Display Value}}{X}$ where X = $\begin{cases} 10 \text{ if GATE TIME is .1s} \\ 10 \text{ if GATE TIME is 1s} \\ 10^7 \text{ if GATE TIME is 10s} \end{cases}$

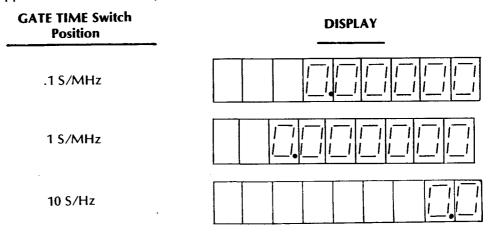
3-9. Note that in the above formula the term "X" changes by a factor of 10⁷ when a 10s GATE TIME is set. The GATE TIME is the same when 1s and .1s selections are made. Note, also, that actual measurement time increases as the frequency applied to the OSCILLATOR-EXT IN connector decreases. If the frequency applied to the OSCILLATOR-EXT IN connector is 1 MHz, for example, and GATE TIME is set to 1s, actual measurement time will be 10 seconds.

Signal Source	Recommended Connection	Recommended 5383A Impedance/Attenuator Selection			
 Signal Generators, or circuits with output: a. Frequency range from 10 MHz to 520 MHz b. Level less than 3.5V (rms) or +24 dBm c. Impedance of 50Ω 	Via Coaxial cable or 50 ohm oscilloscope probe system (e.g., HP 10020A or equivalent)	50Ω X1			
 2. Signal Generators, or circircuits with output: a. Frequency range from 10 MHz to 520 MHz b. Level exceeding 3.5V (rms) or more than +24 dBm c. Impedance of 50Ω 	Via external 50 ohm coaxial attenuator and coaxial cable	50Ω X1			
3. Signal Generators, cir- cuits with output fre- quency less than 50 MHz, or high voltage circuits	Via appropriately termi- nated coaxial cable, 1 MΩ oscilloscope probe (e.g., HP 10004D or equivalent)	1ΜΩ Χ1 1ΜΩ Χ10			
4. 10 Hz to 100 kHz signals with high frequency noise components	Via coaxial cable or oscillo- scope probles	1M Ω X1, or 1M Ω X10 with internal 100 kHz low pass filter selected (see Figure 3–1, item 6)			
5. Transmitter or other high voltage oscillator circuits	DO NOT CONNECT DI- RECTLY TO COUNTER IN- PUT! Use a pick-up antenna and proper attenuators. NOT THE TRANSMITTER ANTENNA!	50Ω X1			
6. High frequency, high power, high impedance circuits	DO NOT CONNECT DI- RECTLY TO COUNTER IN- PUT! Use an inductive loop pick-up device and appro- priate attenuators	50Ω X1			
 High frequency, high impedance low power output 	Active probe system (e.g., HP 1120A or equivalent) NOTE: A probe power sup- ply (e.g., HP 1122A or equivalent) is required, passive attenuator probes	50Ω X1			
8. High frequency signals with a dc level other than zero volts	Coaxial cable with dc block- ing capacitor (e.g., HP 10240B or equivalent)	50Ω X1			

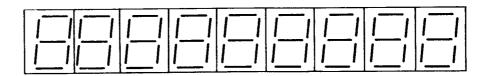
Table 3-1. Measurement Techniques

3-10. OPERATOR CHECKS

3-11. These quick preliminary checks should be performed by the operator when an instrument failure is suspected:


Problem I. No display digits are illuminated

CHECK


- a. Equipment cable plugged in?
- b. Proper line voltage selected on rear panel? (Refer to Paragraph 2-8.)
- c. Rear panel fuse blown? Replace blow fuse with a Listed, $\frac{1}{2}$ Amp slow-blow 125-volt fuse (HP Part Number 2110–0008) for 100-120 volt operation or a Listed, $\frac{1}{4}$ Amp (HP Part Number 2110–0201) slow-blow 250-volt fuse for 220-240 volt operation.

Problem II. All display digits are not illuminated.

a. This is normal, The counter provides a leading zero blanking feature which blanks non-significant display digits. The following displays are correct when a signal is not applied to the counter input:

b. For further assurance, set the GATE TIME switch between any two positions. The following display indicates that all display digit circuits are operating correctly:

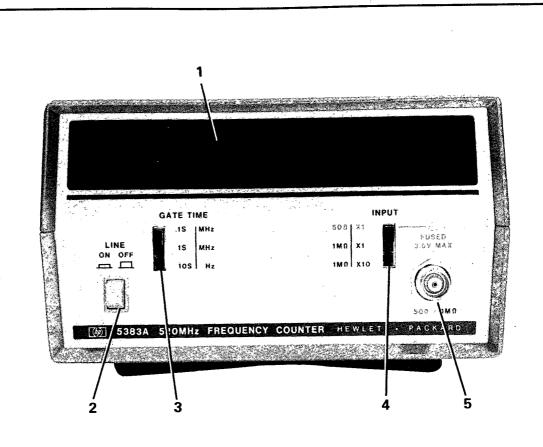
NOTE

When positioned for the display digits test function, GATE TIME switch A1S2 may or may not open the ground lead to the decimal point input of the display LED. For this reason the decimal point may or may not be illuminated during this digit test. Problem III. The frequency counter is not counting the input signal.

CHECK:

- a. Is the rear panel INT/EXT switch in the INT position? (This switch exists in the standard counter only.)
- b. Does this problem occur only when the front panel INPUT switch is in the $50\Omega \times 1$ or $1M\Omega \times 1$ position? This indicates that the internal fuse, A1F1, is blown. Remove instrument covers to gain access to this fuse (refer to Paragraph 5–17, note WARNING). Replace fuse with spare provided on the Main Board Assembly. Order another .1 amp 125-volt fuse (HP Part Number 2110–0436).

NOTE


REMEMBER TO KEEP THE INPUT SIGNAL LEVEL BELOW 3.5V (RMS) OR +24 DBM WHEN THE INPUT SWITCH IS IN THE 50Ω X1!

c. Does this problem occur only when the INPUT switch is in the $1M\Omega X1$ or X10 positions and the input frequency goes higher than 100 kHz? Remove the covers (refer to Paragraph 5–17, note the WARNING). Set the board-mounted FILTER switch to the left (i.e., away from the ">").

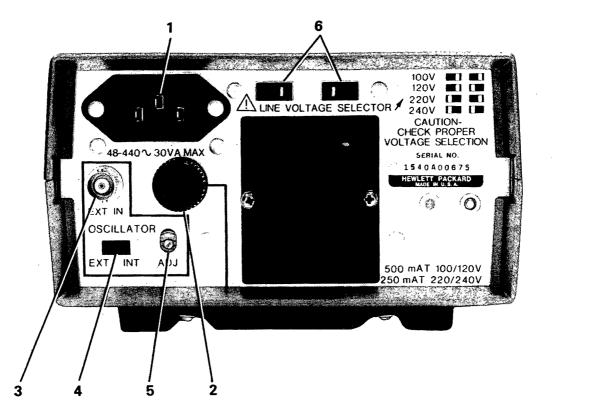
3-12. Finally, this quick and convenient loop-around check is provided to verify normal operation of the instrument:

- a. Set the rear panel INT/EXT switch (exists on the standard counter only) to the INT position.
- b. Set the front panel INPUT switch to the 50Ω X1 position.
- c. Connect a coaxial cable between the rear panel OSCILLATOR jack and the front panel INPUT jack.
- d. 10 MHz display (±1 least-significant digit) indicates that the counter is operating normally.
- e. For loop-around check of the $1M\Omega X1$, or X10 INPUT paths, use a 50Ω Feedthru connector (see Table 5-1, test 2 items e, f, g.).

3–13. If, after these operator checks are performed, the counter does not operate normally, refer to the Troubleshooting Charts: Figure 5–1 and 5–2 in Section V for fault analysis procedures.

1. DISPLAY:

- a. Nine LED (light emitting diode) display digits are provided.
- b. A decimal point indicates display resolution for each GATE TIME selection.
- c. An overflow indicator (dot at the upper left position) shows when the input frequency has exceeded the counting capability of the instrument.
- d. Leading zero blanking surpresses display of non-significant digits (refer to Paragraph 3-11).
- 2. LINE switch: The ac power LINE switch is a push ON, push OFF type. When ON, the pushbutton is set further into the front panel.

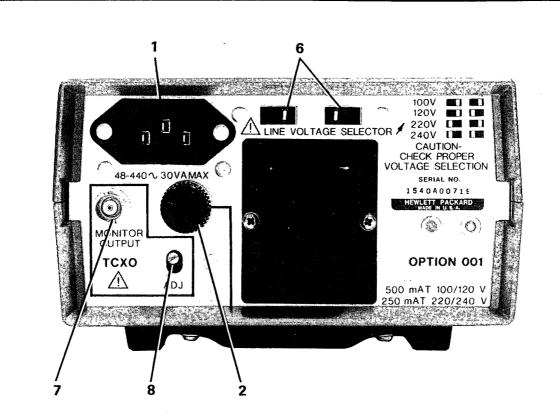

3. GATE TIME switch:

a. Measurement Time selects one of the following measurement times and display resolutions:

GATE TIME Switch Position	Measurement Time	The Decimal Point is Positioned so that Display Reads IN:
.1 S/MHz	1/10 second	MHz
1 S/MHz	1 second	MHz
10 S/Hz	10 seconds	Hz

Figure 3-1. Front Panel and Internal Controls, Indicators and Connectors

- b. When this switch position is changed, the frequency counting circuits are automatically reset to zero count. The new frequency count is then displayed after a delay which is determined by the GATE TIME position (i.e., the measurement time).
- c. Digit self-test provides a display digit self-test capability. When this switch is set between two GATE TIME positions, all display digits should shown "8" (see NOTE in Paragraph 3-11).
- 4. INPUT switch: Selects one of the following input impedances and attenuations:
 - 50 Ω X1 This input is protected from input signals that exceed 3.5V rms (+24 dBm) by an internal 0.1 amp fuse (refer to Paragraph 3–11).
 - $1M\Omega X1$ Shunt capacity: less than 40 pf.
 - $1M\Omega X10$ Shunt capacity: less than 40 pf.
- 5. INPUT connector: Connects signal to be measured to internal circuits. Impedance and attenuation at this jack is selected by INPUT switch.
- 6. INTERNAL FILTER switch (not shown, see Figure 8-1): This switch is positioned in the direction of the arrow (">") to select a 100 kHz low pass filter. This filter permits stable frequency measurements in the 10 Hz to 100 kHz range when the input contains higher frequency noise.


STANDARD REAR PANEL

- 1. **POWER connector:** Connect the source of ac power to the rear-panel power connector.
- 2. FUSE: A Listed, 0.500 ampere, slow-blow fuse is required for 100-volt or 120-volt operation; a Listed, 0.250 ampere, slow-blow fuse is required for 220-volt or 240-volt operation.
- 3. OSCILLATOR connector: Serves as a monitoring point for the internal time base oscillator, or provides an input path for an external time base oscillator, depending on the EXT/INT switch setting.

NOTE

- a. The monitor output is designed to drive a 50 Ω load.
- b. The internal time base oscillator output may be connected to the front panel input jack (with INPUT switch in the $50\Omega X1$ position) to provide a convenient counter self-check operation.
- 4. EXT/INT switch: Selects the function of the OSCILLATOR connector:

Switch Position	OSCILLATOR Connector Function
EXT	Provides a nominal 50 Ω input impedance path for an external 10 MHz time base or ratio input.
INT	Monitors the internal timebase oscillator. An optimum signal is obtained when the output drives a 50 Ω load (>200 mV peak-to-peak).

OPTION 001 REAR PANEL

- 5. OSCILLATOR-ADJ control: The ADJ control is used to set the frequency of the internal time base oscillator. Refer to the *Adjustment* Paragraphs 5–10 or 5–13, in Section V for information.
- 6. LINE VOLTAGE SELECTOR switches: Set the switches to correspond with the voltage of the ac power source. (Refer to Paragraph 2–8 for instructions.)
- 7. MONITOR OUTPUT connector: Serves as an internal time base oscillator monitor output connector only (see NOTE under item 3) for Option 001.
- 8. TCXO ADJ control: Same as 5, above. Refer to Paragraph 5–13, in Section V for information on Option 011 time base adjustment.

SECTION IV

THEORY OF OPERATION

4–1. INTRODUCTION

4-2. The theory of operation is written primarily at a functional block level. Some detailed circuit theory is provided as an aid to troubleshooting when circuit complexity requires it. In addition, brief circuit explanations are given for two unique integrated circuit packages: the Variable Time Base Counter and the Hex Multiplexed Counters.

4-3. FUNCTIONAL DESCRIPTION

4-4. The 5383A is a direct frequency counting instrument which computes input frequency "f" by counting the number of cycles "n" that occurs during an internally generated time base interval "t". This frequency measurement function is described simply by the following equation:

$$n = f x t$$

n = number of cycles

f = frequency of input signal

t = internally generated time base interval

Once calculated, "n" data must be sampled and correctly transferred to the 9-digit counter display.

4-5. INPUT CIRCUIT

4-6. (Refer to Figure 4-1 and to schematic.) Signal "f" is applied to the input circuits consisting of A2S2, A1Q15, and A1Q14. Input switch S2 routes the signal to either the $1M\Omega X1$, X10 path, or the the 50Ω path. Q14 and Q15 biases these signal paths, allowing the Balanced Input Amplifier to accept either the 50Ω or the $1M\Omega$ signal (refer to the schematic for detailed biasing information and corresponding signal path selection). A2S2 can also select a $1M\Omega X10$ attenuator consisting of a 1:10 voltage divider network.

The 50 Ω signal path consists of:

- a. 0.1 amp fuse A1F1 (3.5V rms maximum input).
- b. Clamping and limiting diodes (A1CR12 and CR13; and A1CR8 thru CR11) which limit the input to 1 volt peak-to-peak.

The 1M Ω X1, X10 path consists of:

- a. FET's A1Q17, Q18, and Emitter follower A1Q16.
- b. A switchable low pass filter consisting of A1R55 and C44. Board-mounted switch A1S2 ("FILTER") switches this filter in or out.

4-7. BALANCED INPUT AMPLIFIER

4–8. (Refer to Figure 4–1 and schematic.) This circuit provides approximately 24 dBm of signal gain for the Schmitt trigger input. In addition, the balanced input amplifier uses a feedback circuit to ensure that the dc level of the Schmitt Trigger input remains constant in spite of input circuit or temperature variations. Dc offsets, that result from these variations are sensed by feedback comparator, A1U5 and compared with the level set by balance potentiometer A1R32. A difference results in compensating voltage drive to a differential terminal of A1U8. This compensating voltage ultimately drives the output of A1U6 in a direction which nulls the original offset voltage. For example; if, due to temperature or circuit variations, the input dc level to the Schmitt Trigger becomes more positive; A1U5 senses the change at its input. The comparator responds by providing a negative voltage which is proportional to this positive offset. This negative voltage drives a differential terminal of A1U8; forcing its output in a more positive direction. This positive increase causes the inverting output of A1U6 to go more negative; nulling the original positive offset. This consistent dc level ensures that a sine wave input to the Schmitt trigger (A1U2) produces a symmetrical square wave output.

4-9. TBO AND MAIN GATE CIRCUITS

4-10. (Refer to Figure 4-1 and schematic.) As a result of the Schmitt trigger, signal "f" is now an EECL square wave that is compatible to the digital counter circuits. This square wave is applied to the Main Gate (part of A1U1). The Main Gate is enabled by the low MGE signal which is derived from the T.B. (Time Base) circuits. The width of MGE, or "t", is determined by the setting of the front panel GATE TIME switch. The TBO count down circuits respond to the switch input by counting down the 10 MHz TBO to provide a 0.1, 1.0, or 10 second MG ("t") width (refer to Figure 4-5). It is during this "t" interval, that the enabled Main Gate passes signal "f" through to the Decade Counters. These counters count the number of cycles (during interval "t") and provide the resulting "n" data in the form of nine (4 bit) BCD characters. This accumulated data is transferred to 9 storage latches when a TR (transfer) pulse is received from the Scan Timing circuits.

4-11. SCAN TIMING CIRCUITS

.....

4-12. (Refer to Figure 4-1 or schematic.) A1U24, the Scan Oscillator, is a nominal 2 kHz timing signal generator. The 2 kHz output drives the Scan Timing Circuits which provide update, sample, and display timing signals to the counter storage latches and the display circuits. Figure 4-2 shows the waveforms associated with the Scan Timing circuits.

4–13. The update signals are held off until the measuring time interval, "t", ends. At this time MG goes high enabling generation of the following signals: RSTB (Reset Time Base), TR (Transfer "n" data) and RSC (Reset Counters). These signals are synchronous with the 2 kHz Scan Oscillator. RSTB occurs first and remains active during the entire up date sequence. Typically this sequence lasts approximately 0.4 milliseconds. During this brief time (i.e., brief in proportion to the 0.1, 1.0, or 10 second MG interval):

1) RSTB disables the TBO count down circuits (holding MG high).

2 The TR pulse is generated, transferring all nine "n" data BCD characters to the storage latches. The storage latches are isolated from the Decade counters at all times, except during TR pulse time.

(3) The RSC pulse is generated (after the TR pulse terminates) to reset all counters to zero.

4-14. After RSC pulse time, the RSTB signal changes state, releasing the T.B. count down circuits so they can initiate another frequency measurement cycle. Figure 4-3 (on page 4-6) provides waveforms and a detailed circuit description of the display update sequence.

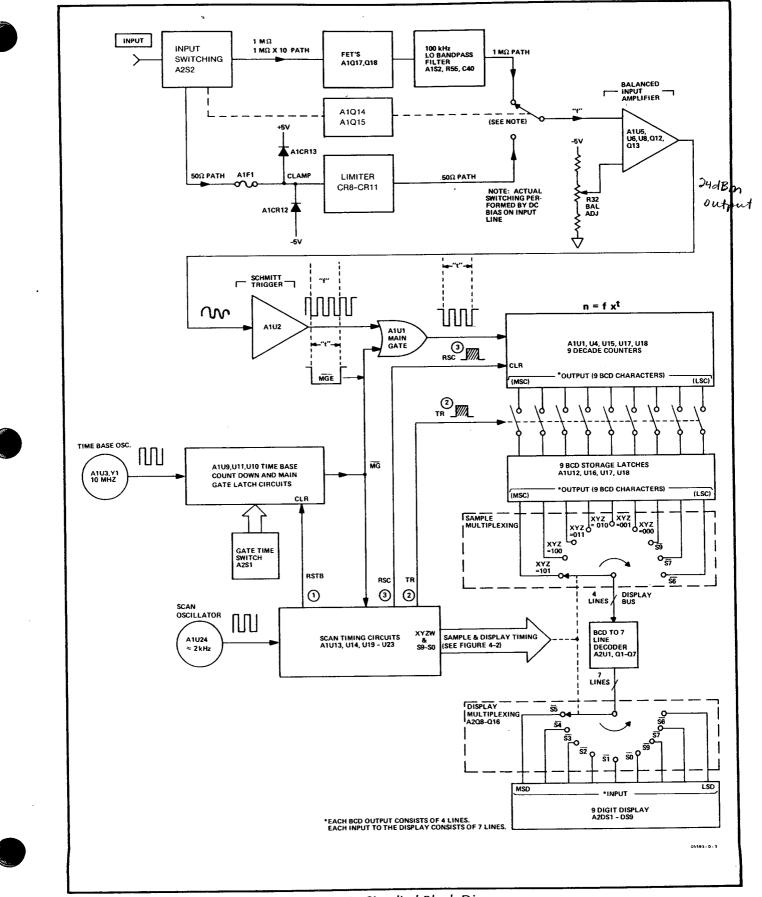


Figure 4–1. Simplied Block Diagram

4-15. MULTIPLEXED DISPLAY FUNCTION

4-16. The sample and display timing circuits provide signals WXYZ, and S0 through S9. These signals sequentially transfer counter data, one (BCD) character at a time to the appropriate display digit. Figure 4-1 shows a mechanical representation of the actual electronic multiplexing function. The wiper arms of the multiplexer "switches" are linked so that when a BCD character is sampled, the correct display digit is activated. For example, during time S5, the most significant character (MSC) is sampled at the counter latches as a result of an XYZ "101" (BCD "5") signal. At the same time a low S5 signal activates the most significant counter display digit (i.e., the left-most display digit). Therefore, during time S5, the MSC is transferred to the BCD-to-seven line decoder via the display bus. The resulting decoder output drives the activated left-most display digit. In a similar manner, lower significant characters are transferred and lower significant display digits are activated during subsequent scan times. Table 4-1 shows correlation between scan times, multiplexing signals, the characters sampled, and the display digits that are activated. Also refer to the scan signal timing diagram (Figure 4-2).

4-17. LEADING ZERO BLANKING

4-18. (Refer to schematic.) The Scan Timing circuits also provides the logic for the leading zero blanking function. Figure 4-4 (page 4-7) describes this function in detail. When the GATE TIME switch is in the 10 S/MHz position the circuit operates as shown. A 1 S/MHz or 10 S/MHz GATE TIME selection changes the RBI gate width and corresponding events to respective 0.4 millisecond or 0.6 millisecond time durations.

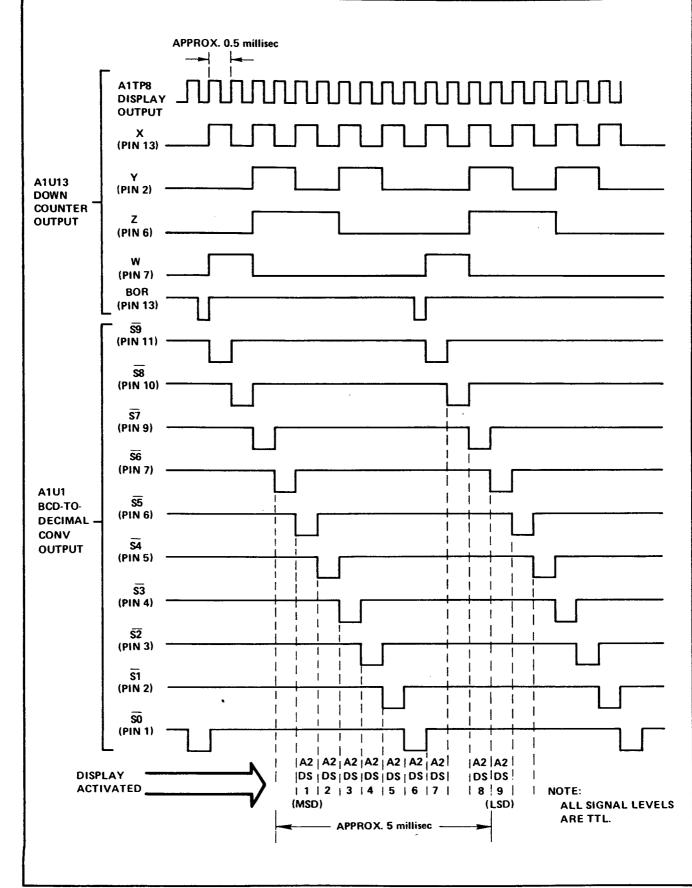
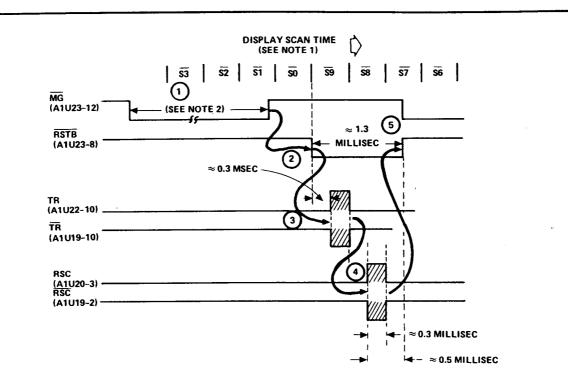
4–19. UNIQUE INTEGRATED CIRCUITS

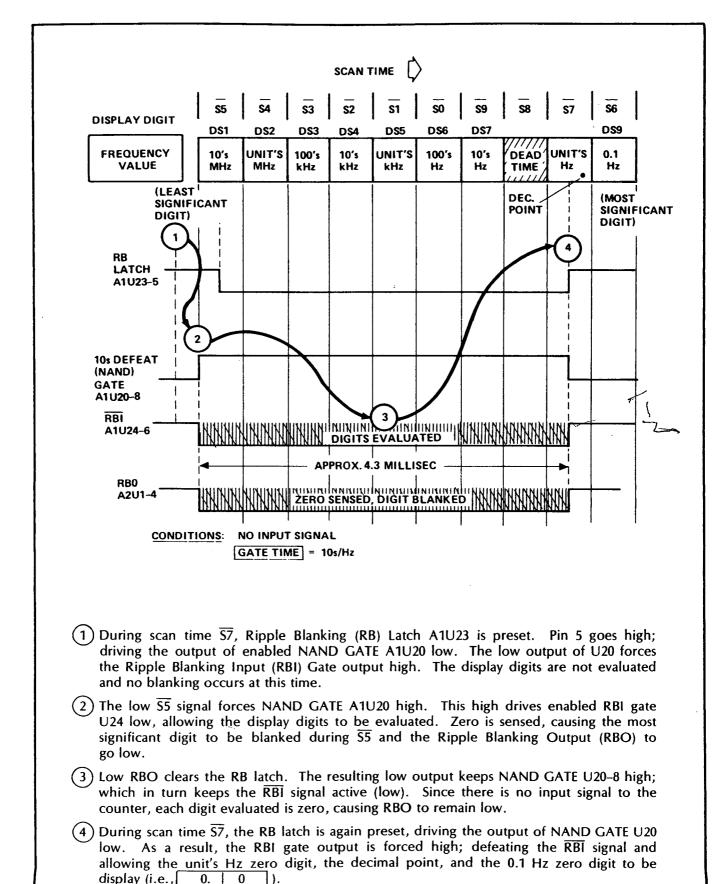
4–20. Figure 4–5 (page 4–8) and 4–6 (page 4–8) contain circuit descriptions of Variable Time Base Counter A1U11 and Hex Multiplexed Counter A1U18. These descriptions pertain to the direct application of these integrated circuits in the 5383A Frequency Counter.

	Table 4–1. Sample and Display Timing										
		SCAN TIME									
		S 5	S4	\$3	S2	S1	S 0	S9	S8	S7	S6
Sample	w	0	0	0	0	0	0	1		0	0
	x	1	0	1	0	1	0				
Multiplexing	Y	0	0	1	1	0	0	S 9		S7	S6
Control Signal	Z	1	1	0	0	0	0				
Counter/Latch	Cntr.	A1U18	A1U18	A1U18	A1U18	A1U18	A1U18	A1U15		A1U4 A1U15	A1U1 A1U4
	Latch	A1U18	A1U18	A1U18	A1U18	A1U18	A1U18	A1U15		A1U16	A1U12
Display Activated		DS1 (MSD)	DS2	DS3	DS4	DS5	DS6	DS7		DS8	DS9 (LSD)
MSD = Most significant display digit. LSD = Least significant display digit.											

Table 4-1. Sample and Display Timing

Model 5383A Theory of Operation

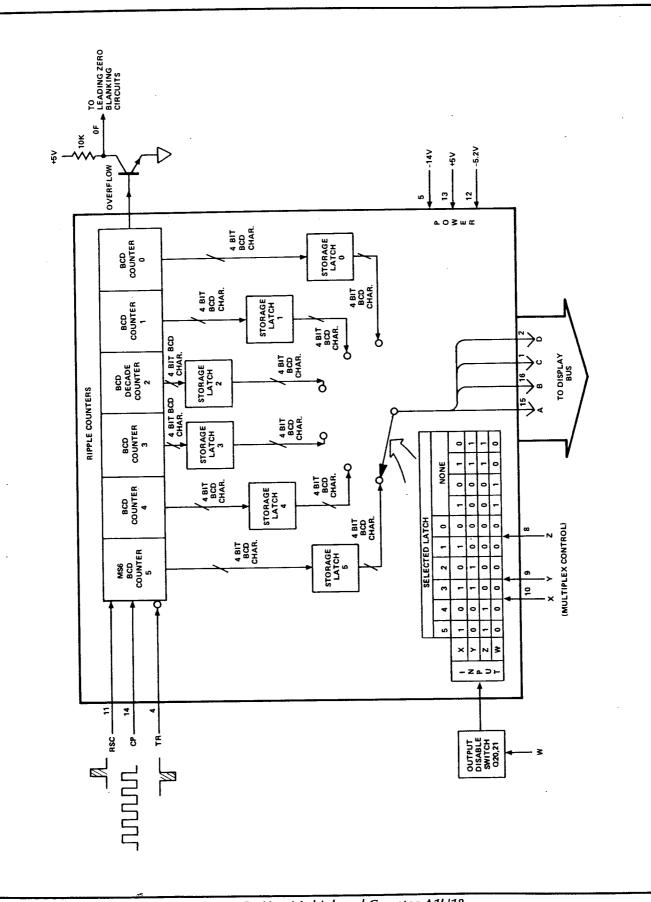

Figure 4–2. Scan Timing Waveforms

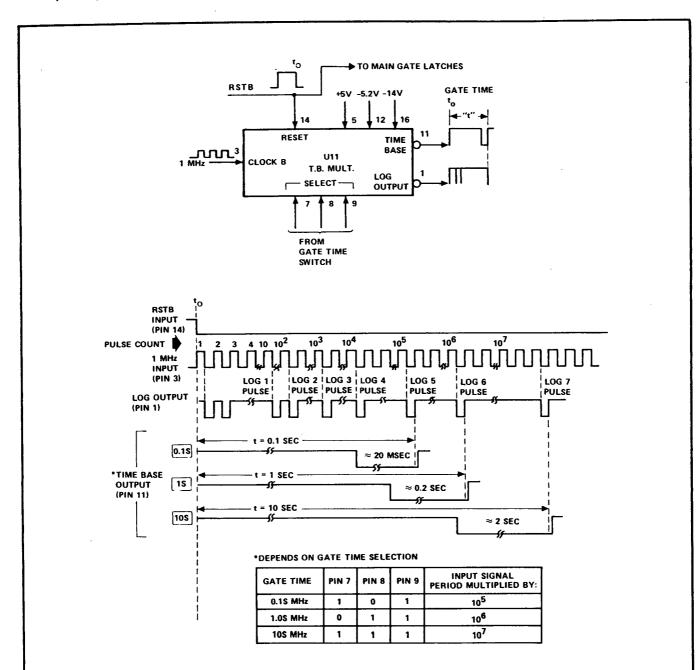
Ļ.

NOTES

- 1. \overline{MGE} is an EECL version of the TTL \overline{MG} signal.
- 2. Display scan timing and the timing of the MG (or MGE) signal are asynchronous. Therefore, the positive transition of the MG (or MGE) signal (i.e., trailing edge) occurs during any random time.
- 3. \overline{MG} (or \overline{MGE}) width ("t") depends on the setting of the GATE TIME switch.
- (1) MGE is low during time "t", allowing the frequency counters to count the input signal frequency. The storage latches are isolated from the counters at this time.
- (2) After the MG signal terminates, the RSTB latch is set at the beginning of scan time S9. This initiates the update sequence. A RSTB signal holds MGE off (i.e., high) until the completion of the update sequence (approximately 0.5 milliseconds later).
- (3) During scan time 59, TR and TR pulses are generated. These signals connect the counter outputs to the storage latches; resulting in the transfer of nine BCD characters to the latches. When the TR and TR pulses end, the latches are again isolated from the frequency counters.
- (4) During scan time $\overline{58}$ RSC and \overline{RSC} pulses reset the frequency counters to zero.
- 5) During scan time $\overline{S7}$, the RSTB latch is cleared, ending the update sequence, and releasing \overline{MGE} (i.e., allowing it to go low) to allow another frequency count.

Model 5383A Theory of Operation




Figure 4-5. Hex Multiplexed Counter A1U18

HEX MULTIPLEXED COUNTER A1U18

The Hex multiplexed counter integrated circuit package consists of six BCD ripple counters, six corresponding storage latches and a multiplex selector circuit. It functions in the following manner:

- a. The clock pulse (Cp) input is counted by the six BCD counters: Counter "5" through Counter "0".
- b. The six (4-bit) BCD characters that result from the counting operation are transferred to the storage latches when the \overline{TR} (transfer) pulse is applied. Otherwise i.e., when no \overline{TR} pulse is applied), the counter outputs are isolated from the storage latches.
- c. After the transfer operation, a reset counters (RSC) pulse clears all the BCD counters to zero.
- d. The BCD characters in the storage latches are sequentially addressed and transferred, one character at a time, to the display bus according to the XYZ multiplexing control signal. A binary XYZ input of six (110) and seven (111) are not recognized by the counter. These inputs result in the isolation of the counter output from the display bus. A high "W" signal also isolates the counter during scan times $\overline{58}$ and $\overline{59}$ to avoid interaction on the display bus between its output and the output of Counter/Storage Latch A1U15.
- e. The Hex Multiplexed Counter generates a high OF (overflow) signal when all six BCD counters reach a terminal nine count. This output is inverted by Q19 to provide the OF which:
 - 1. Lights the overflow light on the left-most front panel display digit.
 - 2. Disables the leading zero blanking circuits.

Model 5383A Theory of Operation

VARIABLE TIME BASE COUNTER U11

σŸ

The variable time base counter responds to a 3-bit binary input (controlled by the front panel GATE TIME switch) by multiplying the one microsecond period of the input signal by a factor of 10^5 , 10^6 , or 10^7 . The resulting time base output gate drives the Main Gate Latches which are clocked by the Log pulse outputs of this integrated circuit. These output Log pulses are spaced according to a logarithmic function of the input signal count. As a result of these signals, an accurate and stable main gate (MGE) is provided for the frequency counting function. A logic high Reset Time Base (RSTB) signal resets the variable time base counter and the Main Gate Latches (resulting in a High MGE) while the frequency counters are transferring data.

SECTION V

MAINTENANCE

5-1. INTRODUCTION

5-2. This section provides data to:

Verify correct counter operation. Define a counter failure. Establish guidelines to restore normal counter operation.

The following information is included:

- a. Performance checks.
- b. Adjustment procedures.
- c. Assembly/Dissassembly procedures.
- d. Troubleshooting procedures.

5-3. IN-CABINET PERFORMANCE CHECK

5-4. Use the performance check in Table 5-1 to verify proper operation of counter. This check should be used when improper operation or nonconformance to specifications is suspected.

Table 5–1.	In-Cabinet	Performance	Check
------------	------------	-------------	-------

1. DISPLAY

- a. Set the GATE TIME switch between any two positions. Observe all nine display digits read "8" (see NOTE at the bottom of page 3-3 in Section III).
- b. Set the GATE TIME to the .1s MHz, 1s MHz, and 10s MHz positions while observing the display for the correct indication as shown below:

GATE TIME

DISPLAY

.1S/MHz 1S/MHz 10S/Hz If your instrument does not meet the above specifications perform the troubleshoot-

ing procedures provided in Figure 5-1.

2. LOOP-AROUND (SELF-CHECK)

- a. (Standard Counter only) set the counter rear panel INT/EXT switch to the INT position.
- b. Set the counter front panel INPUT switch to $50\Omega X1$.
- c. Connect a coaxial cable between the rear panel connector and the front panel connector.
- d. The counter display should indicate 10 MHz ±1 count in all GATE TIME switch positions.
- e. Obtain a 50Ω Feedthru connector (HP 11048C or equivalent).
- f. Disconnect the coaxial cable from the front panel INPUT connector and reconnect to INPUT via a 50ΩFeedthru connector.
- g. The counter display should indicate 10 MHz \pm 1 count in the 1M Ω X1 and the 1M Ω X10 INPUT switch positions.

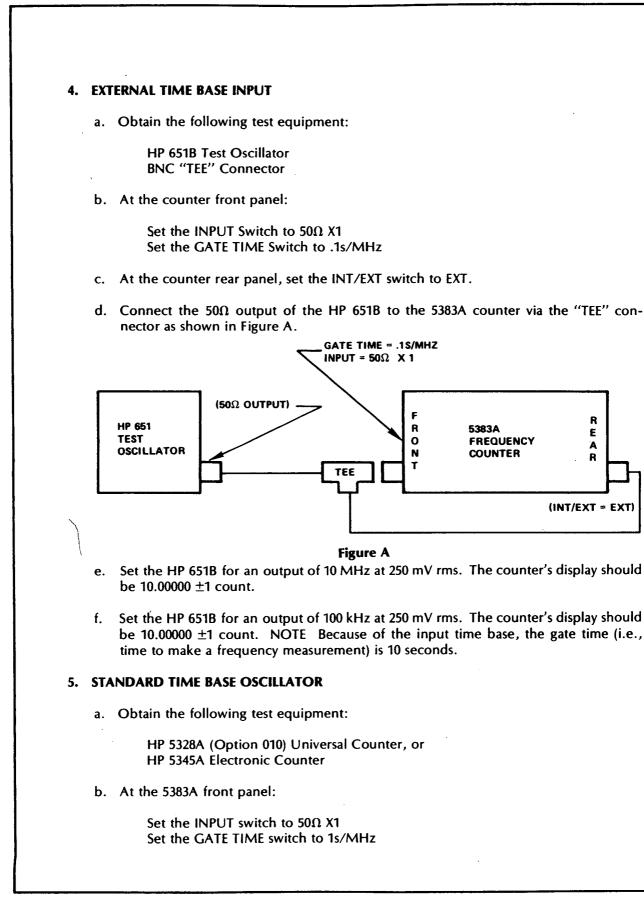
3. SENSITIVITY

a. Obtain the following test equipment:

HP 11048C or equivalent 50Ω Feedthru connector HP 8654B Signal Generator or equivalent HP 651B Test Oscillator or equivalent

- b. Connect a coaxial cable between the output of the test equipment and the 5383A front panel INPUT connector.
- c. Set up switches, test equipment, and the 5383A as described in Table A. Observe that the counter displays the correct frequency, and that the display is stable (see NOTE).

TEST EQUIPMENT	FREQUENCY	OUTPUT LEVEL (RMS)	5383A INPUT SWITCH POSITION
HP 8654B or	520 MHz	25 mV	50Ω X1
equivalent	100 MHz	25 mV	50Ω X1
	50 MHz	50 mV	*1MΩ X1
	10 MHz	25 mV	*1MΩ X1
HP 651B or	20 Hz	25 mV	*1MΩ X1 and 50Ω X1
equivalent	10 Hz	25 mV	*1MΩ X1


TABLE A

*Through a 50Ω Feedthru connector.

NOTE

The stability of the counter display depends on the stability of the test equipment being used. The HP 8654B, for example, has a short term stability which should cause at least the first five most-significant display digits of the counter to be stable.

-

c. Connect a coaxial cable to:

The HP 5345A rear panel FREQ STD OUTPUT 10 MHz, or The HP 5328A (Option 010) rear panel OSC connector

NOTE

The rear panel EXT/INT switch should be in the INT position

- d. Connect the other end of the cable to the 5383A front panel connector.
- e. Observe the 5383A Frequency Counter for a displayed value of 10.000000 MHz ± 25 Hz. If this value is not observed, perform the adjustment procedures in Paragraph 5-10.

6. OPTION 001 TIME BASE OSCILLATOR

a. Obtain the following test equipment:

HP 5328A (Option 010) Universal Counter, or HP 5345A Electronic Counter

b. Set the 5383A front panel switches as follows:

INPUT switch to $50\Omega X1$ GATE TIME switch to 10s/Hz

c. Connect a coaxial cable between the 5383A front panel and:

The HP 5345A rear panel FREQ STD OUTPUT 10 MHz connector, or The HP 5328A (Option 010) rear panel OSC connector

NOTE

Rear panel INT/EXT switch should be in the INT position.

d. Observe the 5383A Frequency Counter for a displayed value of 10000000.0 Hz \pm 10.1 Hz. If this value is not observed, perform the adjustment procedure in Paragraph 5–13.

Model 5383A Performance Tests

PERFORMANCE CHECK RECORD	SHEET
--------------------------	-------

Mill Quitter (RMS) SWITCH POSITION Image: Constraint of the state of the	TESTS		RESULTS	
PASSED FAILED 1. DISPLAY CHECK (Table 5-1, 1)	······································	(NOTE: Enter your initials	to indicate pas	ssed or failed.
1. DISPLAY CHECK (Table 5-1, 1)			PASSED	FAILED
2. LOOP AROUND CHECK (Table 5-1, 2) 3. SENSITIVITY CHECK (Table 5-1, 3) FREQUENCY OUTPUT LEVEL (RMS) S383A INPUT SWITCH POSITION PASSED FAI 520 MHz 25 mV 500 X1	1. DISPLAY CHECK (Table 5–1, 1)	_		
3. SENSITIVITY CHECK (Table 5-1, 3) FREQUENCY OUTPUT LEVEL (RMS) 5383A INPUT SWITCH POSITION PASSED FAI 520 MHz 25 mV 50Ω X1		.1 2)		
FREQUENCY OUTPUT LEVEL (RMS) 5383A INPUT SWITCH POSITION PASSED FAI 520 MHz 25 mV 50Ω X1				
FREQUENCY (RMS) SWITCH POSITION FASSED FASSED 520 MHz 25 mV 50Ω X1	3. SENSITIVITY CHECK (Table 5-1, 3)			
100 MHz 25 mV 50Ω X1			PASSED	FAILE
50 MHz 50 mV *1MΩ X1	520 MHz 25 mV	50Ω X1		
10 MHz 25 mV *1MΩ X1	100 MHz 25 mV	50Ω X1		
20 Hz 25 mV 50Ω X1	50 MHz 50 mV	*1MΩ X1		
20 Hz 25 mV *1MΩ X1	10 MHz 25 mV	*1MΩ X1		
10 Hz 25 mV *1MΩ X1 *Through a 50Ω Feedthru connector. PASSED FAILED 4. EXTERNAL TIME BASE INPUT (Table 5–1, 4)	20 Hz 25 mV	50Ω X1		
*Through a 50Ω Feedthru connector. PASSED FAILED 4. EXTERNAL TIME BASE INPUT (Table 5–1, 4)	20 Hz 25 mV	*1MΩ X1		
PASSED FAILED 4. EXTERNAL TIME BASE INPUT (Table 5–1, 4)	10 Hz 25 mV	*1MΩ X1		
4. EXTERNAL TIME BASE INPUT (Table 5–1, 4)	*Through	a 50Ω Feedthru connecto	r	
4. EXTERNAL TIME BASE INPUT (Table 5–1, 4)			PASSED	FAILED
4. EXTERNAL TIME BASE INPUT (Table 5–1, 4)				
	 EXTERNAL TIME BASE INPUT (Tab (Standard Counter Only) 	ble 5–1, 4) $-$		- 10 - 11 - <u></u>
		OP (Table 5.1.5)		
5. STANDARD TIME BASE OSCILLATOR (Table 5–1, 5) (Standard Counter Only)		OK(Table 5-1, 5) =		
6. OPTION 001 TIME BASE OSCILLATOR (Table 5-1, 6)		TOR (Table 5-1, 6)		
	(Option 001 Only)			
(Option 001 Only)				

•

Model 5383A Performance Tests

HEWLETT-PACKAF FREQUENCY COU	RD MODEL 5383A NTER	Test Performed D	by Date	
	TESTS	<u></u>	RESULTS	
	(N	OTE: Enter your initials t	o indicate pas	sed or failed.)
			PASSED	FAILED
1. DISPLAY CHEC	CK (Table 5–1, 1)			
2. LOOP AROUN	D CHECK (Table 5–1,	2)		
	HECK (Table 5–1, 3)	· .		
J. <u>JENSTIVITI</u> C				
FREQUENCY	OUTPUT LEVEL (RMS)	5383A INPUT SWITCH POSITION	PASSED	FAILED
520 MHz	25 mV	50Ω X1		
100 MHz	25 mV	50Ω X1		
50 MHz	50 mV	*1MΩ X1		
10 MHz	25 mV	*1MΩ X1		
20 Hz	25 mV	50Ω X1	-	
20 Hz	25 mV	*1MΩ X1		
10 Hz	25 mV	*1MΩ X1		
	*Through a	50Ω Feedthru connector.		
			PASSED	FAILED.
	/IE BASE INPUT (Table Counter Only)	5–1, 4)		
	ME BASE OSCILLATO Counter Only)	R (Table 5–1, 5)		
6. OPTION 001 T (Option 0	TME BASE OSCILLATO 101 Only)	DR (Table 5-1, 6)		
	-			

(

5-5. ADJUSTMENTS

5-6. The counter requires two circuit adjustments: The Balanced Input Amplifier adjustment, and the Time Base Oscillator adjustment. Perform these adjustments according to the following procedures:

WARNING

DISCONNECT THE AC POWER CORD FROM THE COUNTER PRIOR TO REMOVING THE COVERS. EXPOSED TERMINALS WITHIN THE COUNTER (INCLUDING SEVERAL POINTS ON THE PRINTED CIRCUIT BOARD) HAVE VOLTAGES PRESENT WHICH ARE SUFFICIENT TO CAUSE INJURY OR DEATH.

5-7. Balanced Input Amplifier

5-8. The input amplifier positive and negative triggering thresholds are adjusted with the following recommended test equipment:

> HP 180A Oscilloscope HP 1801A Oscilloscope Plug-in HP 651B Test Oscillator

5-9. Perform the adjustment as follows:

- Remove the top and bottom covers from the counter as described in Paragraph 5-16. а. **Observe WARNING note.** -
- b. Connect the oscilloscope to A1TP1 of the Main Board Assembly.
- Connect the Test Oscillator 50 Ohm output to the front panel $50\Omega/1M\Omega$ input connector С. of the counter. Set the counter INPUT switch to 50Ω X1.
- d. Set the Test Oscillator for a 1 MHz output at a 25 mV level.
- Connect AC power to the counter. Observe WARNING note. Set the counter LINE е. switch to ON.
- Adjust the oscilloscope sweep time vernier so that one cycle takes up the complete width f. of the oscilloscope display.
- g. On the counter, adjust potentiometer A1R32 until the signal on the oscilloscope shows a 50% duty cycle. Connect Scope probe to AITPI and adjust AIR72 + duty cycle. Set as close as possible. 45/55 to 55/45 is acceptable. 509 for duty ayele.
- Remove test equipment, ac power from the counter, and install the top and bottom counter covers per Paragraph 5-16.

5-10. Standard Time Base Oscillator Adjustment

5-11. The standard time base oscillator is adjusted with the following test equipment:

HP 5328A Universal Counter with Option 010 (10544A Crystal Oscillator) HP 11048C or equivalent 50Ω Feedthru connector OR HP 5345A Electronic Counter

Noz: If Symmetric Wantform (50/50 duty cycle) cannot be actived, * R33 may requerre Changleg, Values between 1.5 KM and 4.7 km are acceptable. ₽

5-5

5-12. Perform the adjustment procedure as follows:

NOTE

1. Ensure that the ambient (room) temperature is 25°C.

2. Allow 1-hour for the 5383A time base oscillator to stabilize before making adjustment.

- a. Set the 5383A INT/EXT switch at the rear panel to the INT position.
- b. Connect a coaxial cable between the 5383A rear panel oscillator and the test counter front panel input connector (described in Table 5-2).
- c. Set up the test counter according to the procedures in Table 5-2.

d. Adjust the 5383A rear panel OSC ADJ control for the following test counter display: **TEST COUNTER DISPLAY**

HP 5328A (with Option 010)	10000.000 kHz			
HP 5345A	10.000000 MHz			

5-13. Option 001 Time Base Oscillator Adjustment

5-14. The Option 001 time base oscillator uses the same test equipment called out in Paragraph 5-10.

5-15. Perform the adjustment procedures as follows:

NOTE

Ensure that the ambient temperature is 25°C (normal room temperature).

- a. Disconnect power from the 5383A and remove the top and bottom covers per Paragraph 5-16. Observe WARNING note.
- b. Connect ac power to the 5383A and set the LINE switch to ON. Allow at least 5 minutes for the TCXO to stabilize.
- c. Connect a coaxial cable between the 5383A rear panel MONITOR connector and the test counter front panel connector (refer to Table 5–2).
- d. Set up the test counter per Table 5-2.
- e. Observe the 25°C frequency offset that is stamped on the side of the 5383A TCXO Assembly (A1U25).

f. Adjust the TCXO Assembly ADJ control so that the value displayed on the test counter equals 10 MHz plus the 25°C frequency offset. FOR EXAMPLE, if +4 Hz is stamped on the side of the TCXO, set the TCXO ADJ control for the following test counter display:

TEST COUNTER	DISPLAY (example)			
HP 5328A (with Option 010)	10000.004 K Hz			
HP 5345A	10.000004 M Hz			

HP 5328A UNIVERSAL COUNTER (with Option 010)

NOTE

HP 11048C or equivalent 50Ω Feedthru connector is also required.

- 1. Connect the coaxial cable to INPUT A through the 50Ω Feedthru connecto (HP 11048C).
- 2. Set ATTEN switch to "1".
- 3. Set LEVEL A to PRESET (fully CCW).
- 4. Set FUNCTION switch to FREQ A.
- 5. Set FREQ RESOLUTION to 1 Hz (10⁶).

HP 5345A ELECTRONIC COUNTER

- 1. Connect coaxial cable to front panel CHANNEL A input connector.
- 2. Set CHANNEL A input impedance to 50Ω .
- 3. Set CHANNEL A ATTEN switch to "X1".
- 4. Set CHANNEL A "- LEVEL +" control to PRESET (fully CCW).
- 5. Set FUNCTION switch to FREQ A.
- 6. Set GATE TIME (outer) control knob to 100 mS.
- 7. Set /DISPLAY POSITION (inner blue) control knob to AUTO.

5-16. INSTRUMENT ACCESS

5-17. Most maintenance operations require that the top and bottom covers be removed from the counter. Remove the covers according to the following procedure:

WARNING

DISCONNECT THE AC POWER CORD FROM THE COUNTER PRIOR TO REMOVING THE COVERS. EXPOSED TERMINALS WITHIN THE COUNTER (INCLUDING SEVERAL POINTS ON THE PRINTED CIRCUIT BOARD) HAVE VOLTAGES PRESENT WHICH ARE SUFFICIENT TO CAUSE INJURY OR DEATH.

- a. Position the instrument upside down and remove the four flat head screws from the bottom of the instrument.
- b. Lift the bottom cover from the instrument, then remove the printed circuit board (with the front and rear panels attached) by pulling the boards straight out of the top cover.
- c. Reassemble in reverse order of disassembly. While mating the top and bottom covers, MAKE SURE that:
 - 1. The standoff spacers (attached to the top cover) are properly inserted into corresponding holes on the Main Board Assembly and the bottom cover.
 - 2. Wires on the Main Board Assembly are clear of the standoff spacers and the Main Board Assembly holes.
 - 3. The front and rear panels are properly inserted into the grooves of the top and bottom covers.

CAUTION

Failure to comply with 5-17.c., items 1, 2, and 3 may result in damage to the Main Board Assembly.

d. Insert and tighten the four flat head screws at the bottom of the counter.

5-18. TROUBLESHOOTING

5-19. If the instrument fails Performance Test one on Table 5-1 (i.e., the Display Test) perform the checks listed on the troubleshooting flowchart, Figure 5-1. If the instrument fails Performance Test Two, refer to the troubleshooting flowchart in Figure 5-2.

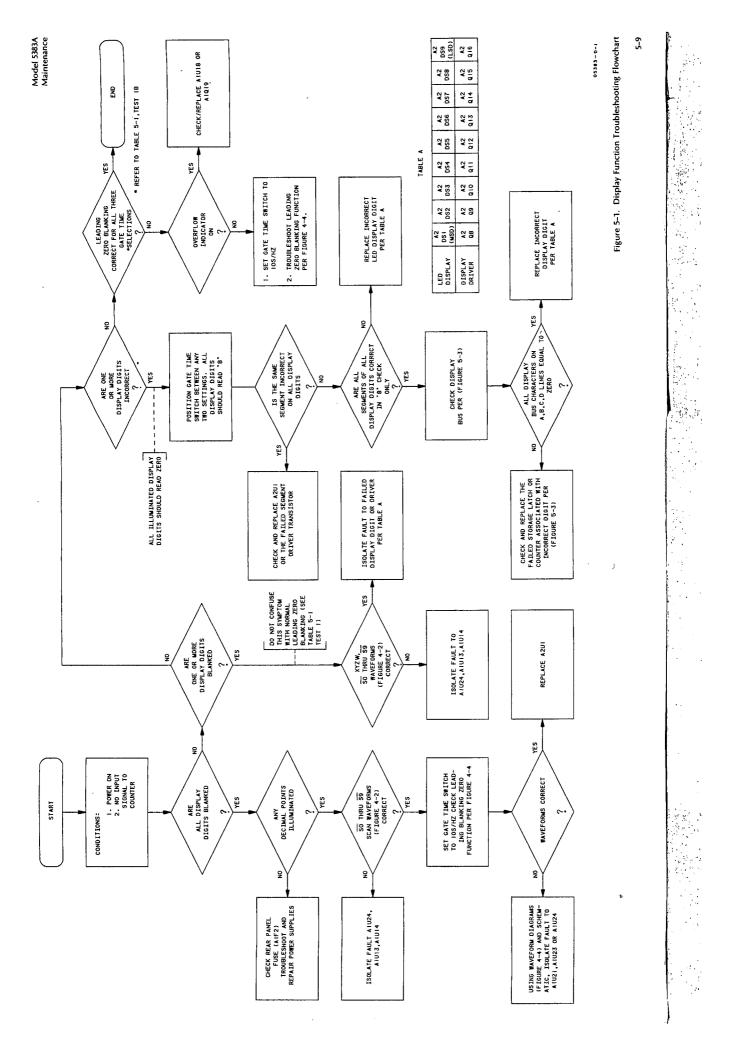
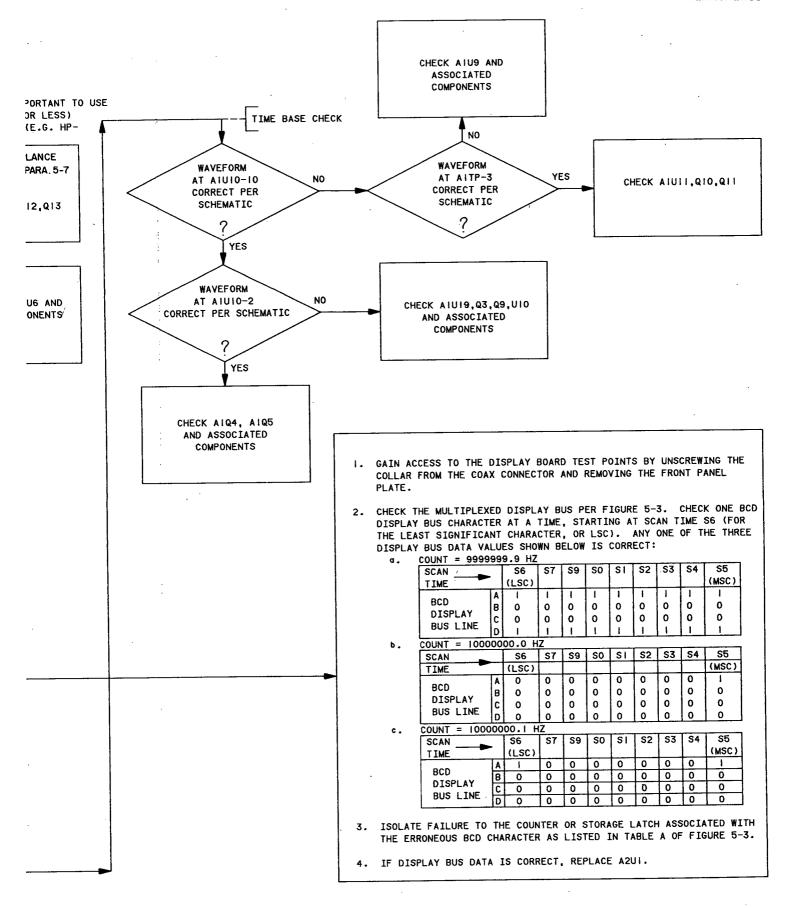
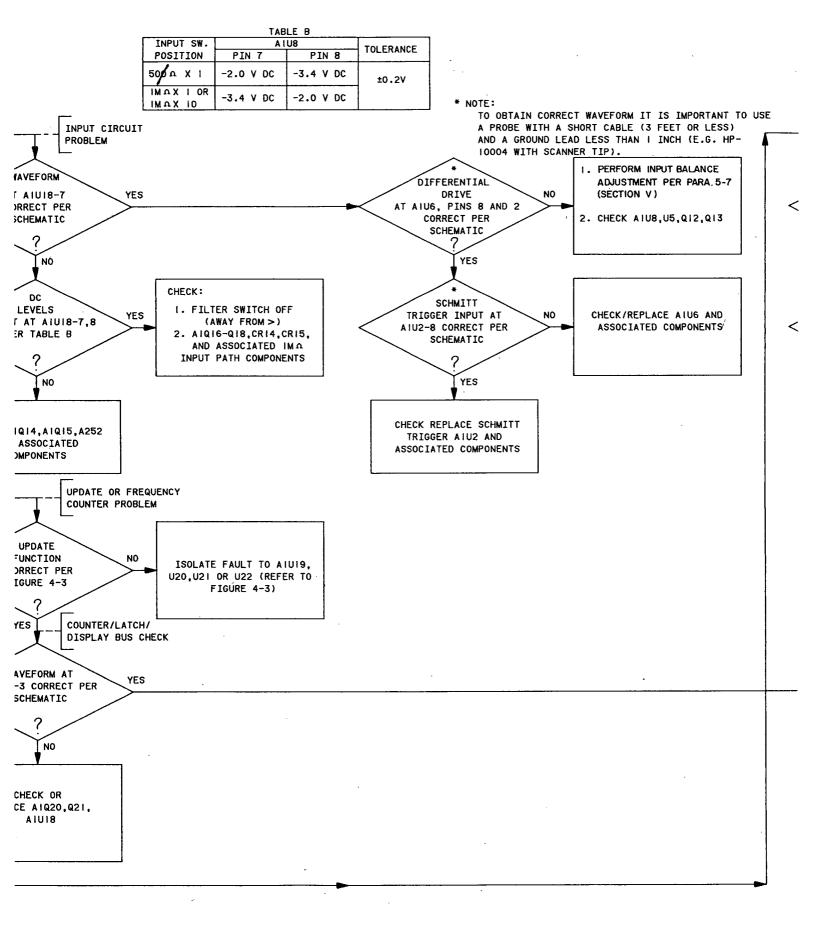
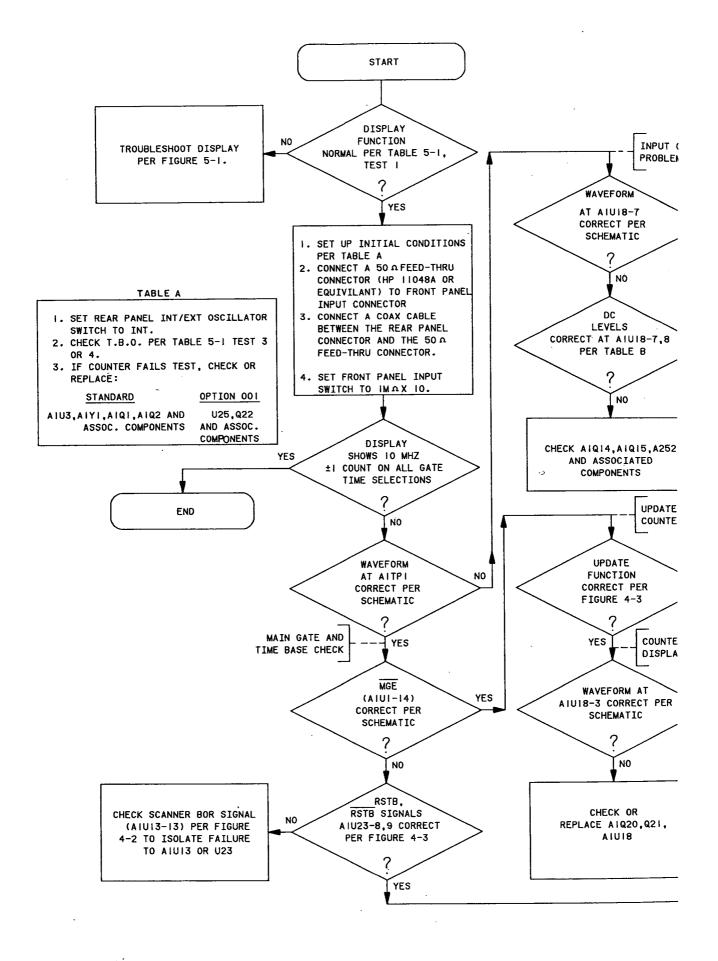


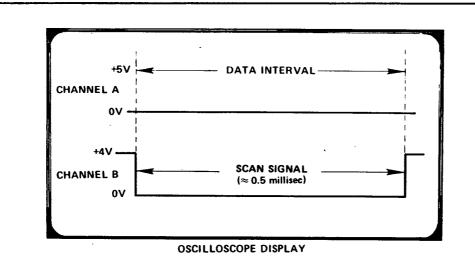
Figure 5–2 COUNTER FUNCTION TROUBLESHOOTING FLOWCHART

.

7

Model 5383A Maintenance


Figure 5-2. Counter Function Troubleshooting Flowchart

τ.

Model 5383A Maintenance

TA	BL	E	A

Active Display Digit	A2 DS1 (MSD)	A2 DS2	A2 DS3	A2 DS4	A2 DS5	A2 DS6	A2 DS7	A2 DS8	A2 DS9 (LSD)
Scan Signal	S5	54	\$3	S 2	S1	S0	S 9	S7	S6
Counter and Storage Latch Components	A1 U18	A1 U18	A1 U18	A1 U18	A1 U18	A1 U18	A1 U17, U21	A1 U4, U7 U15, U16	A1 U1, U4 U7, U12

PROCEDURE

- a. Remove counter front panel to gain access to display bus A,B,C, and D lines.
- b. Set up oscilloscope to trigger on the negative slope of the B channel input.
- ◦c. Connect scan signal of interest to oscilloscope B channel (see Table A).
- d. Set up oscilloscope sweep time vernier so that the scan signal takes up the full width of the oscilloscope display. This width is the "data interval".
- e. With the oscilloscope channel A probe, check lines A,B,C, and D lines for correct BCD data (weight: A=1, B=2, C=4, D=8). Valid data occurs only during the "data interval" established in step (d). For example if a 5 should be displayed at DS2, then the S4 signal should trigger the oscilloscope and be displayed on channel B. Display Bus lines A,B,C, and D should show respective high, low, high and low TTL levels (BCD 5).

WARNING

DISCONNECT THE AC POWER CORD FROM THE COUNTER PRIOR TO REMOVING THE COVERS. EXPOSED TERMINALS WITHIN THE COUNTER (INCLUDING SEVERAL POINTS ON THE PRINTED CIRCUIT BOARD) HAVE VOLTAGES PRESENT WHICH ARE SUFFICIENT TO CAUSE INJURY OR DEATH.

Figure 5-3. Multiplexed Display Bus Monitoring

SECTION VI

.

REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. The major replaceable parts of the 5383A Counter are presented in these tables:

Table 6-1. Main Board Assembly A1 Parts List

Table 6-2. Display Board Assembly A2 Parts List

Table 6-3. Miscellaneous Parts List

Table 6-4. Manufacturers Code List

6-3. In addition, the following notation is provided to indicate whether the part is a factory selected value or is added or removed for the Option 001 TCXO time base oscillator.

~

Notation	Meaning
Asterisk (*)	Part has factory selected value or may not be used in a particular instrument.
Triangle (Δ)	Part used in standard counter only; removed for Option 001.
Square (🗆)	Part added in Option 001 counter only; removed in standard counter.

REFERENCE DESIGNATIONS

A AT	= assembly = attenuator; isolator; termination	E F	= miscellaneous elec- trical part = fuse	Р	= electrical connector (movable portion); plug	U V	= integrated circuit; microcircuit = electron tube
B -	= fan; motor	FL	= filter	Q	= transistor; SCR;	VR	= voltage regulator;
BT	= battery	н	= hardware	_	triode thyristor		breakdown diode
С	= capacitor	HY	= circulator	R	= resistor	w	= cable; transmission
СР	= coupler	J	= electrical connector	RT	= thermistor		path; wire
CR	= diode; diode		(stationary portion);	s	= switch	х	= socket
	thyristor; varactor		jack	Т	= transformer	Y	= crystal unit-piezo-
DC	= directional coupler	к	= relay	TB	= terminal board		electric
ÐL	= delay line	L	= coil; inductor	TC	= thermocouple	2	= tuned cavity; tuned
DS	= annunciator; signal- ing device (audible or visual); lamp; LED	M MP	= meter = miscellaneous mechanical part	TP	= test point		circuit
			ABBRE		S		
Α	= ampere	avg	= average	CHAN	= channel	dc	= direct current
ac ACCESS	= alternating current = accessory	AŴG	= American wire gauge	cm CMO	= centimeter = cabinet mount only	deg	= degree (temperature interval or
ADJ	= adjustment	BAL.	= halance	COAX	= coaxial		difference)

A ac	= ampere = alternating current	avg AWG	= average = American wire	CHAN cm	= channel = centimeter	de deg	= direct current = degree (temperature
ACCESS	= accessory		gauge	CMO	= cabinet mount only		interval or
ADJ	= adjustment	BAL	= balance	COAX	= coaxial		difference)
A/D	= analog-to-digital	BCD	= binary_coded	COEF	= coefficient		= degree (plane angle)
AF	= audio frequency		decimal	COM	= common	°C	= degree Celsius
AFC	= automatic fre-	BD	= board	COMP	= composition		(centigrade)
	quency control	BE CU	= beryllium copper	COMPL	= complete	°F	= degree Fahrenheit
AGC	= automatic gain	BFO	= beat frequency	CONN	= connector	°K	= degree Kelvin
	control		oscillator	CP	= cadmium plate	DEPC	= deposited carbon
AL.	= aluminum	BH	= binder head	CRT	= cathode-ray tube	DET	= detector
ALC	= automatic level	BKDN	= breakdown	CTL	= complementary	diam	= diameter
	control	BP	= bandpass		transistor logic	DIA	= diameter (used in
AM	= amplitude modula-	BPF	= bandpass filter	CW	= continuous wave		parts list)
	tion	BRS	= brass	cw	= clockwise	DIFF	
AMPL	= amplifier	BWO	= hackward-wave	cm .	- = centimeter	AMPL.	= differential amplifier
APC	= automatic phase		oscillator	D/A	= digital-to-analog	div	= division
	control	CAL	= calibrate	dB	= decibel	DPDT	= double-pole, double-
ASSY	= assembly	ccw	= counterclockwise	dBm	= decibel referred to		throw
AUX	= auxiliary	CER	= ceramic		1 mW	DR	= drive

¢۵

			ADDREV	ATIONS			-
DSB	= double sideband	MFR	= manufacturer	PIV	= peak inverse voltage	TFT	= thin-film transistor
DTL	= diode transistor logic	mg	= milligram	pk	= peak	TGL	= toggle
DVM	= digital voltmeter	MH ₂	= megahertz	PL.	= phase lock	THD	= thread
ECL.	= emitter coupled logic	mH	= millihenry	PLO	= phase lock oscillator	THRU	= through
EMF	= electromotive force	mho	= mho	PM	= phase modulation	TI	= títanium
EDP	= electronic data	MIN	= minimum	PNP ·	= positive-negative-	TOI.	= tolerance
	processing	min	= minute (time)		positive	TRIM	= trimmer
ELECT	= electrolytic	*	= minute (plane angle)	P/0	= part of	TSTR	= transistor
ENCAP	= encapsulated	MINAT	= miniature	POLY	= polystyrene	TTI.	= transistor-transistor
EXT	= external	mm	= millimeter	PORC	= porcelain		logic
F	= farad	MOD	= modulator	POS	= positive; position(s)	TV	= television
FET	= field-effect tran-	MOM	= momentary		(used in parts list)	TVI	= television interference
	sistor	MOS	= metal-oxide semi-	POSN	= position	TWT	= traveling wave tube
F/F	= flip-flop		conductor	POT	= potentiometer	U	= micro (10 ⁻⁶) (used
FH	= flat head	ms	= millisecond	р-р	= peak-to-peak		in parts list)
FIL H	= fillister head	MTG	= mounting	PP	= peak-to-peak (used	UF	= microfarad (used in
FM	= frequency modula-	MTR	= meter (indicating		in parts list)		parts list)
	tion		device)	PPM	= pulse-position	UHF	= ultrahigh frequency
FP	= front panel	mV	= millivolt	•	modulation	UNREG	= unregulated
FREQ	= frequency	mVac	= millivolt, ac		= preamplifier	v	= volt
FXD	= fixed	mVdc	= millivolt, de	PRF	= pulse-repetition	VA	= voltampere
g	= gram	mVpk	= millivolt, peak		frequency	Vac	= volts, ac
GE	= germanium	mV p-p	= millivolt, peak-to-	PRR	= pulse repetition rate	VAR	= variable
GHz	= gigahertz		peak	ps	= picosecond	VCO	= voltage-controlled
GL.	= glass	mVrms	= millivolt, rms	PT	= point		oscillator
GND	= ground(ed)	mW	= milliwatt	PTM	= pulse-time modula-	Vdc	= volts, de
H	= henry	MUX	= multiplex		tion	VDCW	= volts, dc, working
h	= hour	MY	= mylar	PWM	= pulse-width		(used in parts list)
HET	= heterodyne	μA	= microampere		modulation	V(F)	= volts, filtered
HEX	= hexagonal	μF	= microfarad	PWV	= peak working voltage	VFO	= variable-frequency
HD	= head	μ. μ.Η	= microhenry	RC	= resistance		oscillator
HDW	= hardware	μmho	= micromho		capacitance	VHF	= very-high frequency
HF	= high frequency	μs	= microsecond	RECT	= rectifier	Vpk	= volts, peak
HG	= mercury	μV	= microvolt	REF	= reference	Vp-p	= volts, peak-to-peak
HI	= high	μVac	= microvolt, ac	REG	= regulated	Vrms	= volts, rms
HP	= Hewlett-Packard	μVdc	= microvolt, dc	REPL	= replaceable	VSWR	= voltage standing
HPF	= high pass filter	μVpk	= microvolt, peak	RF	= radio frequency		wave ratio
HR	= hour (used in parts	μVp-p	= microvolt, peak-to-	RFI	= radio frequency	VTO	= voltage-tuned
	list)	6 · P P	peak	*	interference		oscillator
ну	= high voltage	μVrms	= microvolt, rms	RH	= round head; right	VTVM	= vacuum-tube
Hz	= Hertz	μΨinis μW	= microwatt		hand		voltmeter
IC	= integrated circuit	nA	= nanoampere	RLC	= resistance-	V(X)	= volts, switched
ID .	= inside diameter	NC	= no connection		inductance-	W	= watt
IF	= intermediate fre-	N/C	= normally closed	1	capacitance	W/	= with
••	quency	NE	= neoñ	RMO	= rack mount only	WIV	= working inverse
IMPG	= impregnated	NEG	= negative	rms	= root-mean-square		voltage
in	= inch	nF	= nanofarad	RND	= round	ww	= wirewound
INCD	= incandescent	NI PL	= nickel plate	ROM	= read-only memory	W/O	= without
INCL	= include(s)	N/O	= normally open	R&P	= rack and panel	YIG	= yttrium-iron-garnet
INP	= input	NOM	= nominal	RWV	= reverse working	Zo	= characteristic
INS	= insulation	NORM	= normal	1	voltage	110	impedance
INT	= internal	NPN	= negative-positive-	s	= scattering parameter		inip. cuitor
kg	= kilogram	141.14	negative	8	= second (time)		
∧κ kHz	= kilohertz	NPO	= negative-positive		= second (plane angle)		
	= kilohm	NFU		S-B	= slow-blow (fuse)	•	
kΩ kV	= kilovolt		zero (zero tempera- ture coefficient)	1.11	(used in parts list)		
k v lb		NRFR		SCR	= silicon controlled		
	= pound = industance	NTR	= not recommended for field replacement	5 (C 18)	- sincon controned rectifier; screw		NOTE
IC I	= inductance-	NSP	•	SE	= selenium	All abbre	viations in the parts
	capacitance	NSR	= not separately	SECT	= sections		in upper case.
LED	= light-emitting diode		replaceable		= sections = semiconductor		
	= low frequency	ns nW	= nanosecond	SHF	= superhigh fre-		
IG	= long		= nanowatt	our	- supernign tre- quency		
LH	= left hand	OBD	= order by description	SI	= silicon		
LIM	= limit = limon tonor (used in	OD	= outside diameter	SIL	= silver		
LIN	= linear taper (used in	OH	= oval head	SIL SL			
r:_	parts list)	OP AMPL	= operational amplifier		= slide = signal-to-noise ratio		
lin	= linear	OPT	= option	SNR SPDT		· MI	JLTIPLIERS
LK	= lock washer	OSC ,	= oscillator	arin	= single-pole, double- throw		
WASH		OX	= oxide	SPG	= spring		
1.0	= low; local oscillator	07.	= ounce		= spring = split ring	ALL	
LOG	= logarithmic taper	Ω	= ohm	SR		Abbreviat	ion Prefix Multiple
	(used in parts list)	Р	= peak (used in parts	SPST	= single-pole, single-		
log	= logarithm(ic)	D 4 5 4	list)	COD	throw	-	A 10/2
LPF	= low pass filter	РАМ	= pulse-amplitude	SSB	= single sideband	T	tera 1012
LV	= low voltage	20	modulation	SST	= stainless steel	G	giga 10 ⁹
m .	= meter (distance)	PC	= printed circuit		= steel	M	mega 10 ⁶
mA	= milliampere	PCM	= pulse-code modula-	SQ	= square	k	kilo 10 ³
MAX	= maximum		tion; pulse-count	SWR	= standing-wave ratio	da	deka 10
MΩ	= megohm		modulation		= synchronize	đ	deci 10-
MEG	= meg (10 ⁶) (used in	PDM	= pulse-duration	Т	= timed (slow-blow	r	centi 10-2
	parts list)		modulation		fuse)	m	milli 10-3
	4 = metal film	pF	= picofarad	TA	= tantalum	μ	micro 10-6
MET OX	= metal oxide	PH BRZ	= phosphor bronze	TC	= temperature	n	nano 10-9
	. .	PHL	= Phillips		compensating	р	pico 10 ⁻¹²
MF	= medium frequency;						•
MF	= medium frequency; microfarad (used in parts list)	PIN	= positive-instrinsic- negative	TD TERM	= time delay = terminal	г f а	femto 10-15 atto 10-18

ABBREVIATIONS

I

5383 A List - #1300.00

Table 6-1. Main Board Assembly A1 Parts List

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1	0 5383-6 0001 05383-60001	i	MAIN BOARD ASSEMBLY (STANDARD) SERIES 1620 Series 2552 (\$1200)	28480	05383-60001
A1	05383-60003	1	MAIN BOARD ASSEMBLY (OPTION 001) SERIES 1620 Secies 2552 (\$1300)	-28480	05383-60003
AICE A ZR	0121-0059 0160-2265	1	CAPACITOR=V TRMR-CER 2/8PF 350V PC=MTG Capacitor=FXD 22PF +=5% 500WVDC CER *Pactory selected part	00868 28480	304324 2/8PF NPO 0160=2265
AICSA S	0160-0161 0160-3878	1 20	CAPACITOR=FXD .01UF +=10% 200WVDC POLYE Capacitor=FXD 1000PF +=20% 100WVDC CER	56289 28480	292P10392 0160-3878
A1C5 A1C6AZR A1C7AC A1C8 A1C8 A1C8	0180-0428 0160-2055 0160-3876 0160-3876 0160-3879	4	CAPACITOR-FXD 68UF+20X 6VOC TA CAPACITOR-FXD 01UF +80-20X 100WVDC CER CAPACITOR-FXD 1000PF +-20X 100WVDC CER CAPACITOR-FXD 1000PF +-20X 100WVDC CER CAPACITOR-FXD 01UF +-20X 100WVDC CER	28480 28489 28480 28480 28480 28480	0180=0428 0140=2055 0140=3878 0160=3878 0160=3878 0140=3879
A1010 A1011 A1012 A1013 A1014 A Z R	0180=0058 0160=2055 0180=0480 0180=0480 0180=0480 0160=2055	1	CAPACITOR-FXD 50UF475-10X 25VDC AL CAPACITOR-FXD 401UF +80-20X 100WVDC CER CAPACITOR-FXD 4500UF+75-10X 25VDC AL CAPACITOR-FXD 4500UF+75-10X 25VDC AL CAPACITOR-FXD 401UF +80-20X 100WVDC CER	56289 28480 56289 56289 28480	30D506G025CC2 0160-2055 36DX452G025AA2A 36DX452G025AA2A 0160-2053
AICIS SN AICIA AICI7 AICI6 AICI9	0160-3879 0160-3878 0160-3878 0160-3878 0180-0428 0160-3878		CAPACITOR-FXD .01UF +-20X 100WVDC CER CAPACITOR-FXD 1000PF +-20X 100WVDC CER CAPACITOR-FXD 1000PF +-20X 100WVDC CER CAPACITOR-FXD 80UF+-20X 6V0C TA CAPACITOR-FXD 1000PF +-20X 100WVDC CER	28480 28480 28480 28480 28480 28480	0160=3879 0160=3878 0160=3878 0180=0428 0180=0428 0160=3878
A1C20 A1C21 A1C22 A1C23 A1C23 A1C24	0160-3879 0160-3878 0160-1701 0160-3678 0180-1701	7	CAPACITOR-FXD .01UF +=20X 100WVDC CER CAPACITOR-FXD 1000PF +=20X 100WVDC CER CAPACITOR-FXD 4.8UF+=20X 6VDC TA CAPACITOR-FXD 1000PF +=20X 100WVDC CER CAPACITOR-FXD 4.8UF+=20X 6VDC TA	28480 28480 56289 28480 56289	0160-3879 0160-3878 1500663x0006A2 0160-3878 1500683x0006A2
A1C25 A1C26 A1C27 A1C28 A1C28 A1C29	0180-0428 0180-1701 0160-3878 0160-3878 0160-3878		CAPACITOR=FXD 68UF+=20% 6VDC TA CAPACITOR=FXD 6.8UF+=20% 6VDC TA CAPACITOR=FXD 1000PF +=20% 100WVDC CER CAPACITOR=FXD 1000PF +=20% 100WVDC CER CAPACITOR=FXD 1000PF +=20% 100WVDC CER	28460 56289 28480 28480 28480	0180-0428 1500453x0004A2 0140-3878 0140-3878 0140-3878
A1C30 A1C31 A1C32 A1C32 A1C33 A1C34	0160=0128 0180=1701 0160=3878 0160=3875 0160=3878	2	CAPACITOR-FXD 2,2UF +-20% 50WVDC CER CAPACITOR-FXD 6,8UF+-20% 6VDC TA CAPACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD 22PF +-5% 200WVDC CER CAPACITOR-FXD 1000PF +-20% 100WVDC CER	28480 56289 28480 28480 28480	0160-0128 15006530006A2 0160-3878 0160-3875 0160-3878
A1C35 A1C36 A1C37 A1C38 A1C38 A1C39	0160-3878 0160-3878 0160-3878 0160-3878 0160-3878 0160-0128		CAPACITOR-FXD 1000PF +=20X 100WVDC CER CAPACITOR-FXD 1000PF +=20X 100WVDC CER CAPACITOR-FXD 1000PF +=20X 100WVDC CER CAPACITOR-FXD 1000PF +=20X 100WVDC CER CAPACITOR-FXD 2,2UF ++20X 50WVDC CER	28480 28480 28480 28480 28480 28480	0160=3878 0160=3878 0160=3878 0160=3878 0160=3878 0160=0128
A1C40 A1C43 A1C42 A1C43 A1C43 A1C44	0160-3454 0160-3676 0160-0182 0160-3454 0160-0428	-a 1	CAPACITOR-FXD 220PF +-10% 1000WVDC CER CAPACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD 47PF +-5% 300WVDC MICA CAPACITOR-FXD 220PF +-10% 1000WVDC CER CAPACITOR-FXD 68UF+-20% 6VDC TA	28480 28480 28480 28480 28480 28480	0140-3454 0140-3476 0140-0182 0140-3454 0140-3454 0180-0428
A1C45 A1C46 A1C47 A1C48 A1C48 A1C49	0160-3878 0180-1701 0160-3878 0180-1701 0180-1701		CAPACITOR-FXD 1000PF +=20X 100WVDC CER CAPACITOR-FXD 6.8UF+=20X 6VDC TA CAPACITOR-FXD 1000PF +=20X 100WVDC CER CAPACITOR-FXD 6.8UF+=20X 6VDC TA CAPACITOR-FXD 6.8UF+=20X 6VDC TA	28480 56289 28480 56289 56289	0160-3678 1500685x0006A2 0160-3678 1500665x0006A2 1500685x0006A2
A1050= A	0160-2055	,	CAPACITOR=FXD .01UF +80-20X 100WVDC CER DIODE=SHITCHING 30V 50MA 2N8 DO=35	28480	0160=2055
AICREA STA	1901-0040 1901-0040 1901-0028 1906-0028		DIODE-SWITCHING 30V JOHA 2NS DO-35 DIODE-SWITCHING 30V JOHA 2NS DO-35 DIODE-PWR RECT 400V 750MA DD-29 DIODE-FW BRDG 100V 1.84	28480 28480 04713	1901-0040 1901-0028 MDA922-J
A1CR5 A1CR6 A1CR7 A1CR8 A1CR8 A1CR9 A1CR10	1902-0040 1901-0040 1901-0040 1901-0535 1901-0535 1901-0535	1	DIODE-INR 14V 5% DD-7 PD=,4W 7C#+,056K DIODE-8WITCHING 30V 50MA 2NS DD-35 DIODE-8WITCHING 30V 50MA 2NS DD-35 DIODE-8CHOTTKY DIODE-8CHOTTKY DIODE-8CHOTTKY	07263; 28480 28480 28480 28480 28480	FZ 1201 1901-0040 1901-0335 1901-0535 1901-0535
A1CR11 A1CR12 A1CR13 A1CR14 A1CR15	1901-0535 1901-0050 1901-0050 1901-0040 1901-0040	2	DIODE-SCHOTTKY Diode-Switching Gov Zooma ZNS DO-7 Diode-Switching Gov Zooma ZNS DO-7 Diode-Switching Sov Soma ZNS DO-35 Diode-Switching Sov Soma ZNS DO-35	26480 28480 28460 28460 28460	1901=0535 1901=0050 1901=0050 1901=0040 1901=0040
A1CR16	1901-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35	28480	1901-0040

. . .

▲ Removed for Option 001 ■ Added for Option 001

See introduction to this section for ordering information

r,

Model 5383A Replaceable Parts

,

1	rable 6-1. Main Board Assembly AT Parts List Cont o										
1	Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number					
	AIF1 AIF2 AIL1 AIL2 AIL3 AIL4 AIL5 AIL6 AIL7 AI01A AI02A AI02A AI03 AI04 AI07 AI00 AI07 AI00 AI07 AI00 AI07 AI00 AI07 AI00 AI07 AI00 AI07 AI00 AI07 AI00 AI07 AI07 AI00 AI07 AI0	HP Part Number		Description PUSE ,1A 125V FAST-BLO ,348X.25 UL PUSE ,1A 125V FAST-BLO ,348X.25 UL (SPARE) COIL-MLD 100UH 5X G=50 ,153DX.375LG COIL; FRD; NON-MOLDED RF CHOKE; .75UH COIL, FRD; NON-MOLDED RF CHOKE; .75UH COIL-MLD 27UH 10X G=45 ,095DX.25LG COIL=MLD 700 NPN SI PD=200MW FT=500HHZ TRANSISTOR NPN SI PD=200MW FT=500HHZ TRANSISTOR NPN SI PD=200MW FT=500HHZ TRANSISTOR NPN SI PD=310MW FT=500HHZ TRANSISTOR NPN SI PD=310MW FT=500HHZ TRANSISTOR NPN SI PD=310MW FT=500HHZ TRANSISTOR NPN SI PD=200MW FT=500HHZ TRANSISTOR NPN SI PD=200MW FT=500HHZ TRANSISTOR NPN SI PD=200MW FT=500HHZ TRANSISTOR NPN SI PD=200MW FT=500HHZ TRANSISTOR NPN SI PD=300MW FT=200HHZ TRANSISTOR NPN SI PD=300MW FT=200HZ TRANSISTOR NPN SI PD=300MW FT=200HZ TRANSISTO	Mfr	2110-0436 2110-0436 15/103 VK200-20/4B VK200-20/4B VK200-20/4B 10/272 10/27 10/					
	A1R13 A1R14 A1R15 A1R16 A1R16 A1R16 A1R18 A1R19	0683-1515 0683-2015 0683-1025 0683-1025 0683-1025 0683-1025	2 5	RESISTOR 150 5% 25% FC TC==400/+600 RESISTOR 200 5% 25% FC TC==400/+600 RESISTOR 1% 5% 25% FC TC==400/+600	01121 01121 01121 01121 01121 01121	C81515 C82015 C81025 C85115 C81025					
	A1R20 A1R21 A1R22 A1R23 A1R23 A1R24 A1R25	0683-1025 0698-4123 0698-5176 0698-5176 0698-5176 0698-6244	5	RESISTOR 1K 5% ,25% FC TC=-400/+600 RESISTOR 499 1% ,125% F TC=0+-100 RESISTOR 510 5% ,125% CC TC=-330/+800 RESISTOR 510 5% ,125% CC TC=-330/+800 RESISTOR 510 5% ,125% CC TC=-330/+857 RESISTOR 3,3% 5% ,125% CC TC=-350/+857	01121 24546 01121 01121 01121 01121	C81025 C4=1/8=T0=499R=F 885115 885115 885115 883325					
	A1826 A1827 A1828 A1829 A1830	0698-5174 0683-1035 0683-3325 0683-3025 0698-5180	3 1 1 1	RESISTOR 200 5% ,125W CC TC==330/+800 RESISTOR 10K 5% ,25W FC TC==400/+700 RESISTOR 3,3K 5% ,25W FC TC==400/+700 RESISTOR 3K 5% ,25W FC TC==400/+700 RESISTOR 2K 5% ,125W CC TC==350/+857 "SELECTED VALUE; NOT IN ALL INSTRUMENTS	01121 01121 01121 01121 01121 01121	BB2015 CB1035 CB3325 CB3025 BB2025					
	A1R31 A1R32 A1R33 A1R34 A1R35	0698-6294 2100-1986 0698-6244 0698-6294 0698-5174	3	RESISTOR 47K 5% .125W CC TC==466/+875 RESISTOR=TRMR 1K 10% C TOP=ADJ 1=TRN RESISTOR 3.3K 5% .125W CC TC==350/+857 RESISTOR 47K 5% .125W CC TC==350/+800 RESISTOR 200 5% .125W CC TC==330/+800	01121 73138 01121 01121 01121 01121	884735 62=206=1 883325 884735 882015					
	A1836 A1837 A1838 A1838 A1839 A1840	0698-5179 0698-5174 0698-4123 0698-4123 0698-62374 0698-6242	1 1 4	REBISTOR 1.8K SX .125W CC TC=-350/+857 REBISTOR 200 5X .125W CC TC=-330/+800 REBISTOR 499 1X .125W F TC=-4+100 REBISTOR 20 5X .125W CC TC=-270/+540 REBISTOR 1.2K 5X .125W CC TC=-350/+857	01121 01121 24546 01121 01121	881825 882015 C4=1/8=70=499R=F 882005 881225					
-		-									

Table 6-1. Main Board Assembly A1 Parts List Cont'd

- 65 <u>ده</u> .

▲ Removed for Option 001 ■ Added for Option 001

See introduction to this section for ordering information

6-4

A

1. . .

.

-

.

Reference Designation			Mfr Code	Mfr Part Number	
A1R41 A1R42 A1R43 A1R44 A1R45	0698-7080 9498-1378- 0698-1378- 0698-1378- 0698-7080 0698-8354	2 2 1	RESISTOR 27 5% ,125W CC TC==270/+540 RESISTOR 51 5% ,125W CC TC==270/+540 RESISTOR 51 5% ,125W CC TC==270/+540 RESISTOR 27 5% ,125W CC TC==270/+540 RESISTOR 270 5% ,125W CC TC==330/+800	01121 12110 12110 12110 12110 15110	882705 885105 885105 882705 882715
A1R46 A1R47 A1R48 A1R49 A1R50	0698-6241 0698-5176 0698-7102 1810-0055 0683-2015	1 1 2	RESISTOR 750 5% ,125W CC TC==330/+800 RESISTOR 510 5% ,125W CC TC==330/+800 RESISTOR 5,1K 5% ,125W CC TC==350/+857 NETWORK=RE8 9=PIN=81P ,15=PIN=8PC0 REBISTOR 200 5% ,25W FC TC==400/+600	01121 01121 01121 28480 01121	887515 885115 885125 1810=0055 CB2015
A1R51 A1R52 A1R53 A1R54 A1R55	0698-6242 0698-5177 0698-5294 0698-5183 0698-5183	1 •2. 1	RESISTOR 1,2K 5% .125W CC TC=-350/+857 RESISTOR 820 5% .125W CC TC=-330/+800 RESISTOR 47K 5% .125W CC TC=-466/+875 RESISTOR 4.3K 5% .125W CC TC=-0+882 RESISTOR 10K 10% .125W CC TC=-350/+857	01121 01121 01121 01121 01121 01121	081225 868215 864735 864325 861031
A1856 A1857 A1858 A1859 A1859 A1860	0683-2745 0698-5176 0698-5176 0698-6283 0698-6283	1	RESISTOR 270K SX .25W FC TC==800/+900 RESISTOR 510 SX .125W CC TC==330/+800 RESISTOR 510 SX .125W CC TC==330/+800 RESISTOR 10 SX .125W CC TC==180/+400 RESISTOR 1.2K SX .125W CC TC==350/+857	01121 01121 01121 01121 01121 01121	CB2745 B05115 B05115 B81005 B81005 B51225
A1R61 A1R62 A1R63 A1R64 A1R65	0698-5176 0675-1021 0698-5176 0675-1021 0683-5605	2	RESISTOR 510 5% .125W CC TC==330/+800 RESISTOR 1K 10% .125W CC TC==330/+800 RESISTOR 510 5% .125W CC TC==330/+800 RESISTOR 1K 10% .125W CC TC==330/+800 RESISTOR 56 5% .25W FC TC==400/+500	01121 01121 01121 01121 01121 01121	885115 861021 865115 881021 881021 C85605
A1R66 A1R67 A1R68 A1R69= A1R70=	0698-6242 0698-5183 1810-0055 0683-1515 0683-1025		RESISTOR 1.2K 5% ,125W CC TC=-350/+857 RESISTOR 4.3K 5% ,125W CC TC=0+882 NETWORK-RE8 0-PIN-81P ,15-PIN-8PCG RESISTOR 150 5% ,25W PC TC=-400/+600 RESISTOR 1K 5% ,25W PC TC=-400/+600	01121 01121 28480 01121 01121	881225 884325 1610-0055 C81515 C81025
A1871	0663-5115 3101-1618 3101-1341	1	RESISTOR 510 SX "25W FC TC==400/+600 Switch=8L: DPDT=NS Submin "5A 125VAC/DC Switch=8L: SPDT=NS Submin "5A 125VAC/DC	01121 28480 95146	CB5115 3101+1618 313-120-1
A103 A103 A103 A103 A103 A104 A105 IDC9-	3101-0680 1620-0736 1620-0962 1620-1224 1620-1239	1 3 1 1	SWITCH-PB DPDT ALTNG 4A 250VAC IC-DIGITAL ECL DUAL BIN IC 5064-0164 DIPF AMPL IC-DIGITAL MC10216P ECL TPL 2 LINE RCVR IC-DIGITAL ECL IC MC 1456 0P AMP	28480 28480 28480 04713 28480 04713	3701=0680 1820=0736 /820 - 2642 1820=0882 See Sonv Nork MC10216P 5383A MC1458P1
A1U6 0001 A1U7 25 A1U8 05 A1U8 05 A1U9 3/11/85	1820-0982 1820-1952 1820-1952 1820-1251 1820-1251 1820-0817	1 1 1	IC SOBA-0164 DIFF AMPL IC-DIGITAL MC10125L ECL/TTL QUAD 2 IC SOBA-0164 DIFF AMPL IC-DIGITAL SN74L9196N TTL LS DECD IC-DIGITAL MC10131F ECL DUAL D-M/8	28480 04713 28460 01295 04713	1820-0982 26 MC10125L 26 8N74L5198N MC10131P week 1820-0633 834
A1U11 A1U12 A1U13 A1U13 A1U14 A1U15	1820-0433 1820-1146 1820-0911 1820-091 1820-1185		IC-DIGITAL IC-DIGITAL: DMOSL51N TTL L QUAD IC-DIGITAL: SN74L192N TTL L DECD IC-DIGITAL: SN74135N TTL 4 8CD-TO-DEC IC-DIGITAL: N62390A TTL S DECD	28480 27014 01295 01295 18324	1820=0633 834 DM85L51N SN74L192N N82390A
A1U16 A1U17 A1U18 A1U18 A1U19 A1U20	1820-1166 1820-1143 1820-0634 1820-0174 1820-0054	1 1 1 1	IC-DIGITAL:DM85L51N TTL'L QUAD IC-DIGITAL:DM85S2N TTL DECD SYNCHRO IC-DIGITAL 03 DECD IC-DIGITAL 3N7404N TTL HEX 1 IC-DIGITAL SN7400N TTL GUAD 2 NAND	27014 27014 28480 01295 01295	DM85L51N DM8552N 1820-0634 SN7404N SN7404N SN7400N
A1U21 A1U22 A1U23 A1U24 A1U25 = A	1820-0661 1820-0328 1820-0077 1820-0537 0960-0394	1 1 1 1	IC=DIGITAL::SN7432N TTL QUAD 2 OR IC=DIGITAL SN7402N TTL QUAD 2 NOR IC=DIGITAL SN7402N TTL DUAL D=TYPE IC=DIGITAL:SN7413N TTL DUAL 4 NAND TCXO"CRYSTAL OSCILLATOR	01295 01295 01295 01295 26480	SN7432N SN7402N SN7474N SN7413N 0960=0394
A1XF1 A1XF2	1251=3205 1251=3205	4	CONNECTOR-SGL CONT SKT .022-DIA Connector-SGL Cont Skt .022-DIA	28480 28480	1251=3205 1251=3205
A171 A	0410-0405	1	CRYSTAL GUARTZ 10 MHZ A1 MISCELLANEOUS Terminal-Lug-Sldr 6 Scr .1447.144 ID	28480	0410=0405

▲ Removed for Option 001 ■ Added for Option 001

.

.

See introduction to this section for ordering information

.

	120
	. W

с •

Table 6-2. Display Board Assembly A2 Parts List

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
AP	05383-60002	1	DISPLAY BOARD ASSEMBLY	-28480	05383-60002
A2C1 A2C2 A2C3	0180-0106 0160-4182 0140-0209	1 1	CAPACITOR=FXD 60UF+=20% 6VDC TA Capacitor=FXD _01UF +=20% 200mVDC CER Capacitor=FXD SPF +=10% 500mVDC MICA	56289 6F364 72136	1500+06×000+82. 200=200=×7R=103M DN15C050×0500WV1CR
AZCR1	1901-0040	i i	DIODE-BWITCHING SOV SOMA 2N8 DO-35	28480	1901=0040
A2D31 A2D32 A2D33 A2D34 A2D34 A2D35	1990-0469 OR 1990-0470 OR	•	DISPLAY NUM SEG 1 CHAR ,3 IN HIGH DISPLAY NUM SEG 1 CHAR ,3 IN HIGH DISPLAY NUM SEG 1 CHAR ,3 IN HIGH DISPLAY NUM SEG 1 CHAR ,3 IN HIGH	28480 28480 28480 28480 28480 28480	1990-0452 1990-0452 1990-0452 1990-0452 1990-0452
A2D34 A2D37 A2D38 A2D38 A2D39	1990-0471 (Refer to Paragraph 6-6.)		DISPLAY NUM BEG 1 CHAR .3 IN HIGH DISPLAY NUM BEG 1 CHAR .3 IN HIGH DISPLAY NUM BEG 1 CHAR .3 IN HIGH DISPLAY NUM BEG 1 CHAR .3 IN HIGH	28480 28480 28480 28480 28480	1990=0452 1990=0452 1990=0452 1990=0452
A2J1	1250=1163	1	CONNECTOR-RF BNC FEM SGL-HOLE-RR SO-OHM	28480	1250-1163
AZLI	9100=1620	1	COIL-MLD 15UH 10% G=65 ,155DX,375LG	24226	15/158
A201 A202 A203 A204 A204	1854-0492 1854-0492 1854-0492 1854-0492 1854-0492	7	TRANSISTOR NPN SI PD=350MW FT=250MHZ Transistor npn si pd=350MW FT=250MHZ Transistor npn si pd=350MW FT=250MHZ Transistor npn si pd=350MW FT=250MHZ Transistor npn si pd=350MW FT=250MHZ	28480 28480 28480 28480 28480	1854-0492 1854-0492 1854-0492 1854-0492 1854-0492
A206 A207 A208 A209 A209	1854-0492 1854-0492 1853-0318 1853-0318 1853-0318	ą	TRANSISTOR NPN SI PD=350MW FT=250MMZ Transistor npn si PD=350MW FT=250MHZ Transistor PNP si PD=500MW FT=60MMZ Transistor PNP si PD=500MW FT=60MHZ Transistor PNP si PD=500MW FT=60MHZ	28480 28480 04713 04713 04713	1854-0492 1854-0492 MP86562 MP86562 MP86562
A2011 A2012 A2013 A2014 A2015	1853-0318 1853-0318 1853-0318 1853-0318 1853-0318 1853-0318		TRANSISTOR PNP SI PO#500MW FT#60MHZ TRANSISTOR PNP SI PD#500MW FT#60MHI Transistor PNP SI PD#500MW FT#60MHZ TRANSISTOR PNP SI PD#500MW FT#60MHZ TRANSISTOR PNP SI PD#500MW FT#60MHZ	04713 04713 04713 04713 04713 04713	MP 36562 MP 36562 MP 36562 MP 36562 MP 36562
A2Q16	1853-0318		TRANSISTOR PNP SI PD#500MW FT#60MHZ	04713	* MP\$6562
A2R1 A2R2 A2R3 A2R4 A2R5	0683-2705 0683-2705 0683-2705 0683-2705 0683-2705	11	RESISTOR 27 5% .25% FC TC==400/+500 RESISTOR 27 5% .25% FC TC==400/+500	15110 1121 01121 01121 1121 01121	C82705 C82705 C82705 C82705 C82705 C82705
A2R6 A2R7 A2R8 A2R9 A2R9	0663-2705 0683-2705 0683-0395 0683-0395 0683-0395 0683-0395	Ŷ	RESISTOR 27 5% ,25% FC TC==400/+500 RESISTOR 27 5% ,25% FC TC==400/+500 RESISTOR 3.9 5% ,25% FC TC==400/+500 RESISTOR 3.9 5% ,25% FC TC==400/+500 RESISTOR 3.9 5% ,25% FC TC==400/+500	01121 01121 01121 01121 01121	CB2705 CB2705 CB3905 CB3905 CB3905 CB3905
A2R11 A2R12 A2R13 A2R14 A2R15	0683-0395 0683-0395 0683-0395 0683-0395 0683-0395 0683-0395		RESISTOR 3.9 5% .25W FC TC==400/+500 RESISTOR 3.9 5% .25W FC TC==400/+500	01121 01121 01121 01121 01121 01121	CB3905 CB3905 CB3965 CB3965 CB3905
A2R16 A2R17 A2R18 A2R19 A2R20	0603-0395 1810-0076 0683-2705 0683-2705 0683-2705	1	REBISTOR 3.9 5% .25W FC TC==400/+500 NETWORK=REB 9=PIN=5IP .15=PIN=5PCG REBISTOR 27 5% .25W FC TC==400/+500 REBISTOR 27 5% .25W FC TC==400/+500 REBISTOR 27 5% .25W FC TC==400/+500	01121 28480 01121 01121 01121	CB3965 1810-0076 CB2705 CB2705 CB2705
A2R21 A2R22 A2R23 A2R24 A2R24 A2R25	0683-4715 0683-4715 0683-4715 0683-4715 0683-4715	•	RESISTOR 470 5% ,25% FC TC==400/+600 RESISTOR 470 5% ,25% FC TC==400/+600	01121 01121 01121 01121 01121 01121	CB4715 CB4715 CB4715 CB4715 CB4715 CB4715
A2R26 A2R27 A2R28 A2R29 A2R30	0683-4715 0683-4715 0683-4715 0683-2705 0683-1825	1	REBISTOR 470 SX ,25W FC TC==400/+600 REBISTOR 470 SX ,25W FC TC==400/+600 REBISTOR 470 SX ,25W FC TC==400/+600 REBISTOR 27 SX ,25W FC TC==400/+600 REBISTOR 1,8K SX ,25W FC TC==400/+700	01121 01121 01121 01121 01121 01121	CB4715 CB4715 CB4715 CB2705 CB1025
A2R31 A2R32 A2R33 A2R33 A2R34 A2R35	0683-4715 0698-8354 0698-7102 0698-7097 0698-7964	1 1 1 1	RESISTOR 470 SX ,25W PC TC=-400/+600 RESISTOR 270 SX ,125W CC TC=-330/+800 RESISTOR S,1K SX ,125W CC TC=-350/+857 RESISTOR 1M SX ,125W CC TC=-600/+1137 RESISTOR 100K SX ,125W CC TC=-466/+875	12110 1121 01121 01121 01121 01121	CB4715 BB2715 BB5125 BB1055 BB1045
A281 A282 A2U1	3101-1598 3101-1598 1820-0914	2	SWITCH-SL DP3T-NS MINTR 1A 125VAC PC Switch-8L DP3T-NS Mintr 1A 125VAC PC IC-DIGITAL 9307DC TTL 4 BCD-TO-7-8EG A& Mi8Cellaneou8	28480 28480 07263	3101+1598 3101+598 9307DC
	- 0510=0076 1251=3768	1 32	NUT-SHMET 6-32-THD .63-HD STL Contact-conn u/w post type male dpslor	78553 28480	C8399-632=248 1251-3768

See introduction to this section for ordering information

Model 5383A Replaceable Parts

Table 6-3. Miscellaneous Parts List

.....

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
			CHASSIS MTD AND MISCELLANEOUS PARTS		· · · · · · · · · · · · · · · · · · ·
C51	0160-3043	1	CAPACITOR=FXD S000FF/5000FF +=20%	-28480	0160-3043
F2 F2	2110-0008 2110-0201	1	FUSE .5A 125V SLO-BLO 1.25X.25 UL FUSE .25A 250V SLO-BLO 1.25X.25 UL IEC	75915 75915	313,2509 313,2509
J1 J2	1251-2357 1250+0083		CONNECTOR-AC PWR HP-9 MALE FLG-MTG Connector-RF bnc fem 3gl-Hole-FR 50-0MM	28480 24931	1251=2357 28JR=130=1
S4 ·	3101-1609	1	SWITCH-SL 2-DPDT-NS STD 1.5A 250VAC SLDR	82389	11E-1036
TI	9100=3039	1	TRANSFORMER, POWER	28460	9100-3039
U26 U27	1826-0122	1	IC +5.0 VOLT RGLTR IC -5.2 VOLT RGLTR	07263 04713	7805UC MC7905,2CP
W1	8120-1378	1	CABLE ASSEMBLY 18AWG 3-CNDCT GRY-JKT .253-OD	28480	8120-1378
XP2 XP2 XF2	2110-0464 2110-0465 2950-0054	1 1 1	FUSEHOLDER-EXTR POST 20A 300V UL/IEC FUSEHOLD-CAP UL/IEC .25X1.25FUSE NUT-MEX-DBL-CHAN 1/2-28-THD .125-THK	75915 28480 28480	345002-010 2110-0465 . 2950-0072
	0340=0765 0370=0914 0370=2486 7101=0373 5040=7032		INSULATOR-XSTR TO-220 .002-THK Bezel;Pushbuttgn Knob, Jade Grey Pushbutton(Solid Gray) Panel, Front Foot, Rear	28480 28480 28480 28480 28480 28480	0340=0765 0370=0914 0370=2486 7101=0373 5040=7032
	05300-00006 05301-20005 05301-40001 05381-20003	2	CLIP-RFI Stand, Tilt Foot Cover, Top	28480 28480 28480 28480 28480	05300-00006 05301-20005 05301-40001 05381-20003
	05381-20004	1	COVER, BOTTOM	28480	05381+20004
	05381-20005 05382-00002 05382-00003		STANDOFF, A1 MOUNTING PANEL, REAR (STANDARD INSTRUMENT) PANEL, REAR (OPTION 001 INSTRUMENT)	28480 28480 28480	05381=20005 05382=00002 05382=00003
	1				
	1	1	1	1	1

See introduction to this section for ordering information

~

ъ 37

Model 5383A Replaceable Parts

Table 6-4. Manufacturers Co	ode List
-----------------------------	----------

Mfg. No.	Manufacturer Name	Address	Zip Code
0086S	STETTNER-TRUSH INC.,	CAZENOVIA, N	Y 13035
01121	ALLEN-BRADLEY CO., M	IILWAUKEE, WI	53212
01295	TEXAS INSTR INC SEMIC	OND CMPNT E	DIV, DALLAS, TX 75231
02114	FERROXCUBE CORP., SA	UGERTIES, NY	12477
04713	MOTOROLA SEMICONE	DUCTOR PROD	UCTS, PHOENIX, AZ 85008
07263	FAIRCHILD SEMICONDU	JCTOR DIV, M	OUNTAIN VIEW, CA 94040
11236	CTS OF BERNE INC., BER	RNE, IN 46711	
18324	SIGNETICS CORP., SUNN	NYVALE, CA 940	086
24226	GOWANDA ELECTRONI	CS CORP., GO	WANDA, NY 14070
24546	CORNING GLASS WORK	KS (BRADFORD), BRADFORD, PA 16701
24931	SPECIALTY CONNECTOR	R CO INC., IND	IANAPOLIS, IN 46227
27014	NATIONAL SEMICONDU	CTOR CORP.,	SANTA CLARA, CA 95051
28480	HEWLETT-PACKARD CO	CORPORATE H	IQ, PALO ALTO, CA 94304
56289	SPRAGUE ELECTRIC CO.	, NORTH ADA	MS, MA 01247
6F 364	CENTRE ENGINEERING I	NC., STATE CO	LLEGE, PA 16801
72136	ELECTRO MOTIVE CORF	SUB IEC, WILL	IMANTIC, CT 06226
73138	BECKMAN INSTRUMENT	IS INC HELIPOT	DIV., FULLERTON, CA 92634
75915	LITTELFUSE INC., DES PL	AINES, IL 60016	
78553	TINNERMAN PRODUCTS	S INC., CLEVEL	AND, OH 44129
79963	ZIERICK MFG CO., MT.	KISCO, NY 105	49
82389	SWITCHCRAFT INC., CH	IICAGO, IL 606	30
95146	ALCO ELECTRONIC PRO	DUCTS INC., L	AWRENCE, MA 01843

6-8

.

~

6-4. ORDERING INFORMATION

6-5. To obtain replacement parts, address order to your local Hewlett-Packard Sales and Service Office (see lists at the back of this manual for addresses). Identify parts by their Hewlett-Packard part number. To obtain a part that is not listed, include:

- a. Instrument model number.
- b. Instrument serial number.
- c. Description of the part.
- d. Function and location of the part.

6-6. LED Display Digit Ordering Information

6-7. The 5380 series frequency counter uses three types of LED display digits. These LED's differ according to light intensity. Table 6-5 lists the three LED intensities together with the original and new part numbers. The original part numbers denot the intensity level of the LED with the suffix C, D, or E; while the new part numbers are different for each intensity level.

LED LIGHT INTENSITY	ORIGINAL PART NUMBERS	CORRECT REPLACEMENT PART NUMBERS
C Light Intensity	5082–7731 C or 1990–0452 C	19900469
D Light Intensity	5082–7731 D or 1990–0452 D	1990-0470
E Light Intensity	5082–7731 E or 1990–0452 E	1990-0471

Table 6–5. LED	Display	Digit	Part	Numbers
----------------	---------	-------	------	---------

NOTE

When replacing an LED, check the part number to determine the correct intensity level for its replacement. Order the new LED using the correct replacement part number listed in Table 6–5.

6-8. Replacement Hardware for Mounting U27 Regulator

6-9. Two methods have been used for mounting -5.2V regulator U27 on the rear panel. One method uses a single nylon screw which screws into a 6-32 threaded hole in the rear panel. The second method uses a stainless steel machine screw and a nylon shoulder washer. The screw fits a 4-40 threaded hole in the rear panel and the shoulder washer insulates the screw from the body of the regulator.

6-10. The 6-32 x $\frac{1}{4}$ " nylon slotted head machine screw is available under HP Part Number 2360-0055. This screw will break if overtightened.

6-11. A number 4-40 x $\frac{1}{4}$ binding head Pozi-drive machine screw with lockwasher (HP Part Number 2200-0103) and flat washer (HP Part No. 3050-0124) is used in the second, more recent, mounting for U27. The flat washer prevents the lockwasher from damaging the nylon shoulder washer (HP Part Number 3050-0756).

6-12. Both mounting methods require the use of an insulator between the chassis and the body of U27. This insulator is listed in Table 6-3 under HP Part Number 0340-0765.

SECTION VII

MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains information regarding manual, changes for instrument serial prefixes other than that listed on the title page.

7-3. MANUAL CHANGES

7-4. This manual applies directly to Model 5383A's with serial prefix on inside front cover. See Paragraph 1-8 (in Section I) for the method of serial number identification.

7-5. Newer Instruments

7-6. As changes are made, newer instruments may have serial prefixes that are not listed in this manual. The manual for these instruments are supplied with a manual change sheet which contains the required updating information. If this sheet is missing, contact the nearest Hewlett-Packard Sales and Service Office listed at the back of this manual.

7-7. Manual Backdating for Older Instruments

7-8. This manual, with the changes listed in Table 7-1, also applied to 5383A Counters with Serial Prefix 1508A or 1516A, Serial No. 1516A00275 and below, or Serial Prefixes of 1532A, 1540A, and 1620A.

7-9. To backdate this manual for any instrument with the serial numbers or serial prefixes listed above and in Table 7-1, make the changes shown in Table 7-1. Make the change in descending sequence starting with Change 3.

Serial Prefix or Serial Number	Changes					
Serial Prefixes 1508A or 1516A	1,2,3					
Serial No. 1516A00276 and above or Serial Prefix 1532A	2,3					
Serial Prefix 1540A	3					
Serial Prefix 1620A	4					

Та	ble	7–1.	Manua	I Changes
----	-----	------	-------	-----------

CHANGE 1

Page 2–1, Paragraph 2–9, step b:

Change to the following: "Ensure that the correct fuse is installed. Use a Listed 0.250 ampere, slow-blow fuse for 100-volt or 120-volt operation. Use a Listed 0.125 ampere, slow-blow fuse for 220-volt or 240-volt operation. See NOTE at end of Change 1.

Page 3-3, Paragraph 3-10, Problem 1, Check c. and

Page 6-7, Table 6-3, Chassis Mounted and Miscellaneous Parts:

Change $\frac{1}{2}$ Amp fuse F2 (HP Part No. 2110-0008) to $\frac{1}{4}$ Amp (HP Part No. 2110-0018) and the $\frac{1}{4}$ Amp fuse for F2 (HP Part No. 2110-0201) to $\frac{1}{6}$ Amp (HP Part No. 2110-0318).

Model 5383A Manual Changes

CHANGE 1 Cont'd

Page 3–7, Figure 3–2a; Page 3–8, Figure 3–2b; and Page 8–5, Figure 8–2, A1 Schematic Diagram:

Change VA rating (adjacent to power connector) from 30 to 20 VA.

Change fuse values of 500 and 250 MAT to 250 and 125 MAT, respectively.

NOTE

The recommended replacement fuse for F2 in any instrument is the 500 MAT 125V fuse (HP Part No. 2110–0008) for 100 or 120V operation; the 250 MAT 250V fuse (HP Part No. 2110-0201) for 220 or 240V operation.

CHANGE 2

Page 6-6, Table 6-2, A2 Display Board Replaceable Parts:

Change A2 series number to "(SERIES 1540)".

Change A2Q1 through A2Q7 from HP Part No. 1854-0492 to 1854-0246, "Mfr Code" to 04713, and "Mfr Part Number" to SPS233. See NOTE below.

Page 8-7, Figure 8-3: A2 Schematic Diagram table of "ACTIVE ELEMENTS":

Change "HP Part No." for "Q1-7" from 1854-0492 to 1854-0246 (SPS233).

Page 6-7, Table 6-3, Chassis Mounted and Miscellaneous Parts:

Change front panel from 7101-0373 to 05383-00001 in columns for "HP Part Number" and "Mfr Part Number". See NOTE below.

Page 1–1, Figure 1–1, Front Panel View:

Change name to read "500 MHz FREQUENCY COUNTER".

Change all front-panel views in the same manner.

Page 1-3, Table 1-2, Specifications:

Change "Frequency Range" maximum for 520 to 512 MHz.

NOTE

All 5383A Counters will meet the same specifications as those given in Table 1–2 for Series 1628A including the 520 MHz maximum frequency range.

The 7101-0373 panel can be used for replacement purposes in any series 1508A, 116A, or 1532A instrument. This panel shows 520 MHz in place of 500 MHz.

The HP Part No. 1854–0492 transistor is recommended for replacement of A2Q1 through A2Q7 in any series 1508A, 1516A, or 1532A instrument.

CHANGE 3

Pages 6-3 and 6-5, Table 6-1, 05383-60001/05383-60003 Replaceable Parts: Change A1 series number to 1540.

Change A1U14 from 1820-0491 (SN74145N) to 1820-0214 (SN7442N) in "HP Part Number" and "Mfr Part Number" columns in Table 6-1. See NOTE below.

Page 6-6, Table 6-2, 05383-60002, Replaceable Parts:

Change A2 series number to 1540.

Change A2R7 from 1810–0076 (8 x 1800 Ω) to 1810–0041 (8 x 1800 Ω). See NOTE below. Change A2R30 from 0683–1825 (1800 Ω) to 0683–2725; (2700 Ω) and change "Mfr Part Number" from "CB1825" to "CB2725".

Page 8–5, Figure 8–2, A1 Schematic Diagram:

Change series number at top of schematic to 1540.

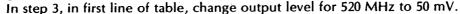
Change A1U1 in table of ACTIVE ELEMENTS from 1820-0491 (74145) to 1820-0214 (7442).

CHANGE 3 Cont'd

Page 8-7, Figure 8-3, A2 Schematic Diagram: Change series number, at top of schematic, to 1540. Change A1R17 from 1800 to 2700 ohms per section. Change A2R30 from 1800 to 2700 ohms.

NOTE

The SN74145N (HP Part No. 1820-0491) integral circuit is recommended for A1U14 replacement in all serial prefix 1508A, 1516A, 1532A, or 1540A instruments. If the SN74145N is used for A1U14, an 8 x 1800 ohm resistor pack (HP Part No. 1810-0076) is recommended for A2R7 and an 1800 ohm resistor (HP Part No. 0683-1825) is recommended for A2R30.


CHANGE 4

Page 1-3, Table 1-2: Change SENSITIVITY specification as follows:

INPUT Switch Positon	Frequency Range	Sensitivity (RMS) 25 mV	
50Ω X1	20 Hz to 100 MHz		
	100 MHz to 520 MHz	م 50 mV	

Page 5-2, Table A:

In first line of Table A, change output level at 520 MHz to 50 mV. Page 5-4a, Performance Check Record Sheet:

SECTION VIII

SCHEMATIC DIAGRAMS

8–1. INTRODUCTION

8-2. This section contains component location and schematic diagrams. Included on the schematic diagrams are key waveforms for the convenience of the troubleshooter. These waveforms show nominal values that are present when the 5383A Counter is set up in the following manner:

- a. Loop-around test configuration (the rear panel OSCILLATOR output connector is connected to the front panel INPUT connector with a coaxial cable and a 50Ω feedthru connector (i.e., HP 11048C or equivalent).
- b. The INPUT switch is set to $1M\Omega \times 10^{-1}$

8-3. A list of active components is provided for quick identification of those parts which are more likely to fail. A complete listing of all replaceable parts is provided in Section VI.

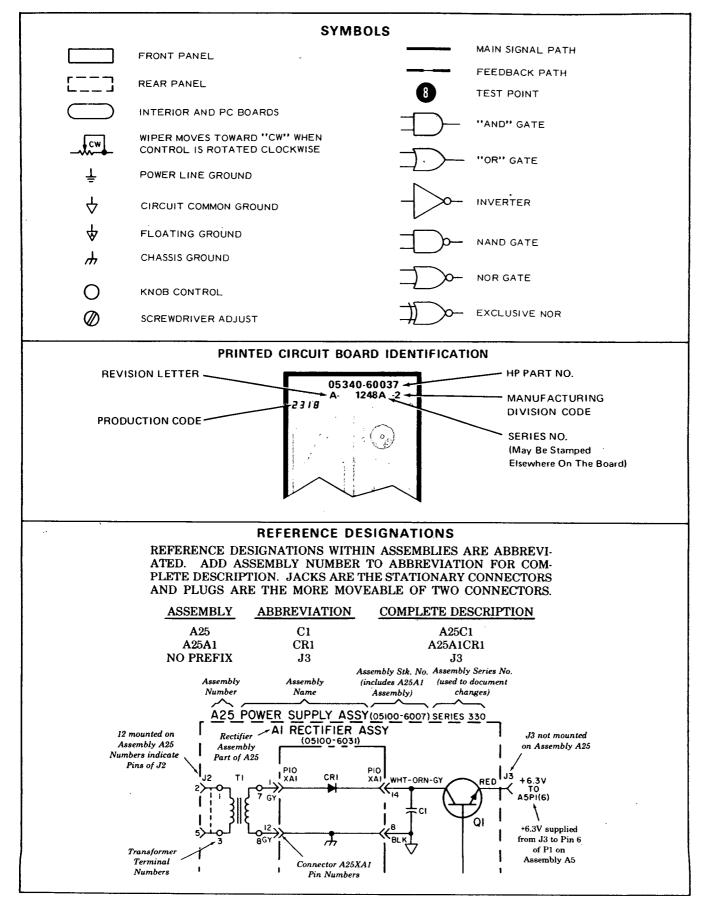
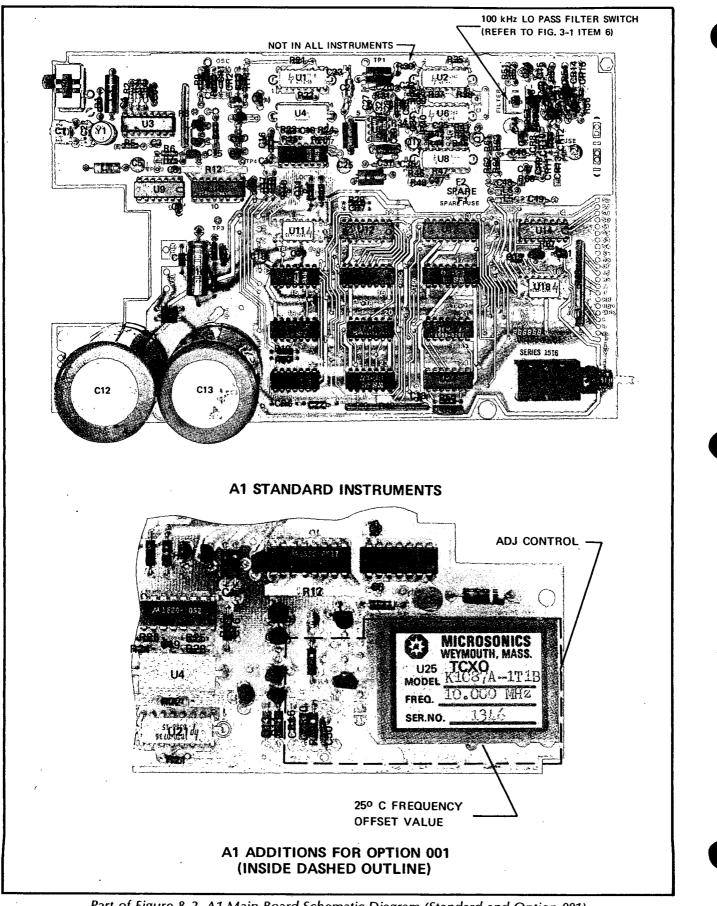
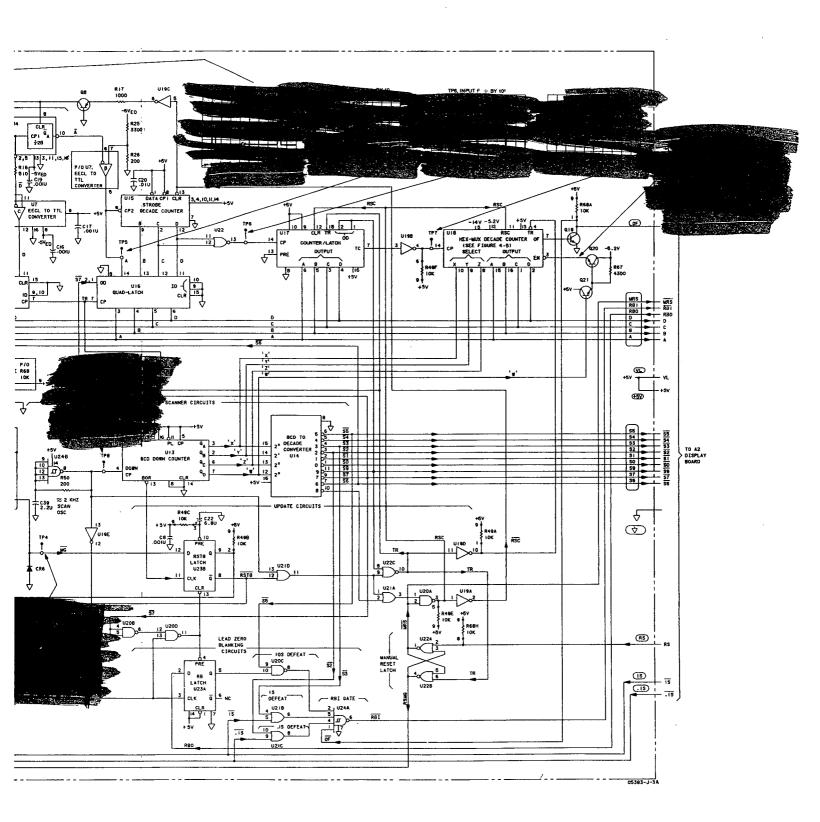


Figure 8–1. Schematic Diagram Notes

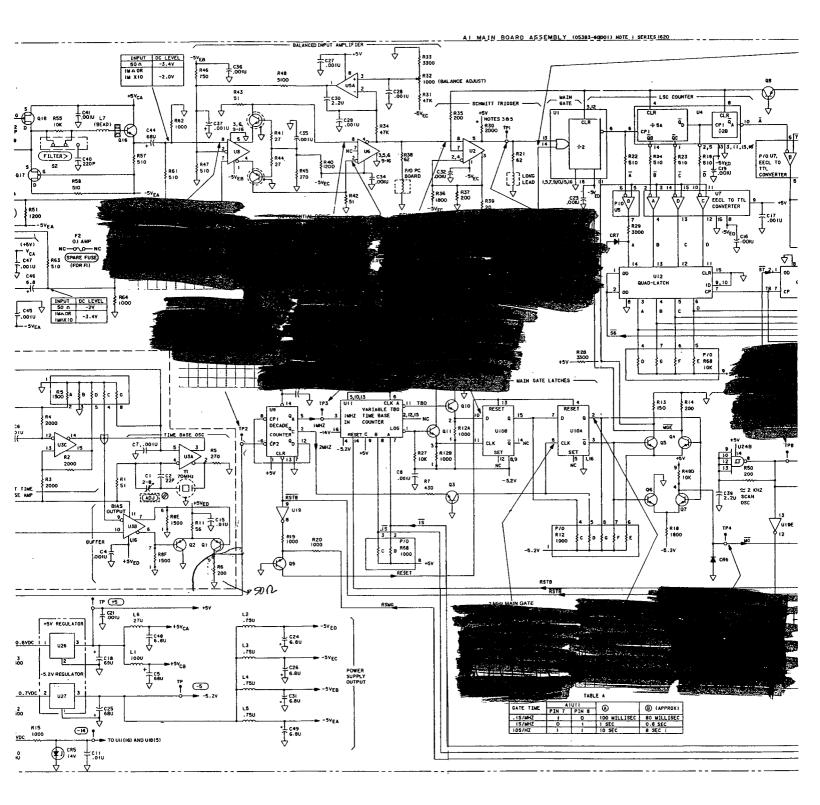

Table 8–1.	Major	Signal	Definitions
------------	-------	--------	-------------

~


.

Mnemonic	Table 8-1. Major Signal Definitions Description
A,B,C,D	Display Data Bus BCD lines (Weight: A=1, B=2, C=4, D=8).
MG	TTL version of MGE; used to control RSTB Latch.
MGE	Main gate control signal (EECL logic level); allows input to frequency counters (when Low).
MRS	Counter reset and display digit test command (generated by RS signal).
. OF	Overflow; low TTL level indicates overflow of frequency counters.
RBI	Ripple Blanking Input; low TTL level allows blanking of zeros in display; high TTL level inhibits zero blanking.
RBO	Ripple Blanking Output; low TTL level when zeros are blanked from display; high TTL level at all other times.
RS	High TTL level resets counter when GATE TIME switch posi- tion is changed. Provides display digit test when GATE TIME switch is held between positions.
RSC RSC	TTL signals that reset frequency counters.
RSTB RSTB	TTL signals that reset the variable Time Base counter and Main Gate Latches during the update sequence (see Figure 4–3).
50 THRU 59	Eight continuously cyclying display scan signals; each scan line activates one display digit.
TR TR	TTL signals that transfer frequency counter BCD data to the storage latches during the update sequence (see Figure 4–3).
W X Y Z	Used for output multiplexing of the Hex Multiplexed Decade Counter BCD characters. These signals also drive the Hu BCD-to-Decimal converter providing the Scan signals (S0 thru S9).
. <u>Ts</u> <u>Ts</u> 10s	Low TTL level that illuminate the LED display decimal points and control leading zero blanking.

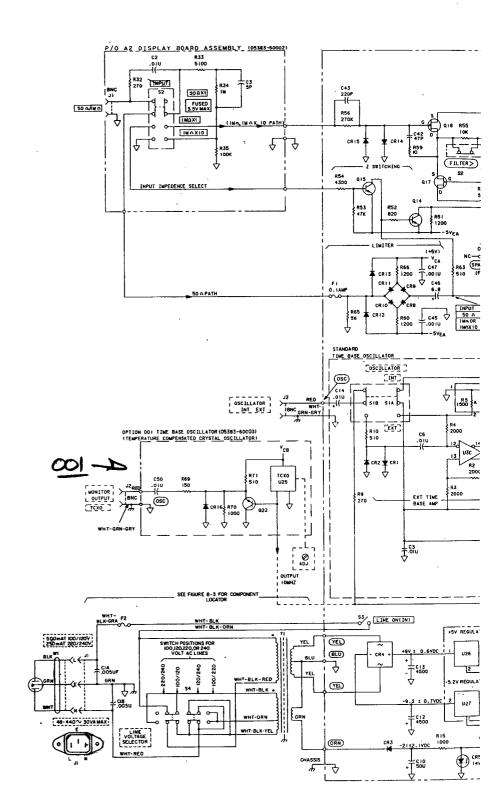
đ


Part of Figure 8-2. A1 Main Board Schematic Diagram (Standard and Option 001) and Part of A2 Display Board

,

Figure 8–2. A1 Main Board Schematic Diagram (Standard and Option 001) and Part of A2 Display Board

...

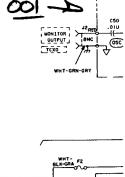

Q

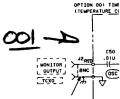
THIN THIS ASSEMBLY ARE ABBREVIATED. **3BREVIATION FOR COMPLETE DESCRIPTION.** Э:

TED COMPONENT. ROM SET-UP DESCRIBED IN PARA. 8-2. IUMENTS.

T1 U26,27

			D	REFERENCE		
WBERS		1	Ī	A2][CHASSIS
040		-50	[C1-3] [C51
iR1358-9)		1-16		CR1 DS1-9		F2 J1,2
IDA922-3)	F1,			J1		
(FZ1201)	Q1	-22		L1	11	S 4
901-0050	R1	-71		Q1-16 R1-35		54 T1
2N3563)	T1	-3		S1,2		U26,2
2N3563)		-25	L	<u>U1</u>		W1
(2N3904)	Y1					
2N5179)	<u> </u>		-			
071						
2N5245)						
21102407	PWR (PIN)	PWR RTN PIN	7			
736	VED(11)	16	1			
982	-5.2V(1)	9				
CL10216)	VCB(16), (1)	8				
019	VEB(13)	3,11,15				
139 38N)	VEC(4) +5V(8)					
CL10125)	+5V(9)	16				
74LS196)	VED(11) +5V(14)	7				
VIC10131)	-5.2V(8)	1, 16				
1633	-14V(16) -5.2V(4) +5V(9)	-				
DM85L51)	+5V(16)	8				
(74L192)	+5V(16)	8				
(74145)	+5V(16)	8				
(82\$90)	+5V(14)	7				
J (8552)	+5V(14)	8				
1634	+5V(13), -5.2V(12), -14V(5)	1				
1 (7404)	+5V(14)	7				
i (7400)	+5V(14)	7		•		
1 (7432)	+5V(14)	· 7				
l (7402)	+5V(14)	7				,
' (7474)	+5V(14)	7				
' (7413)	+5V(14)	7	1			
1394	See schem.	See schem	1.			
? (7805)	See schem.	See schem	4			
VIC7905.2)	See schem.	See schem	1.			


74**4** <u>.</u>,


. •

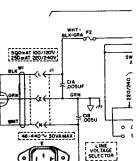
NOTES

- REFERENCE DESIGNATIONS WITHIN THIS ASSEMBLY ARE ABBREVIATED. ADD ASSEMBLY NUMBER TO ABBREVIATION FOR COMPLETE DESCRIPTION. UNLESS OTHERWISE INDICATED: 1. 2. 2.
- - **RESISTANCE IN OHMS;**
 - CAPACITANCE IN FARADS;
- INDUCTANCE IN HENRIES, ASTERISK (*) INDICATES SELECTED COMPONENT. WAVEFORMS SHOWN RESULT FROM SET-UP DESCRIBED IN PARA. 8-2. A1R30 NOT USED IN ALL INSTRUMENTS.
- 3. 4. 5.

ACTIVE	ELEMENTS			REFERENCE	
REFERENCE DESIGNATIONS	PART NUMBERS		11	A2	CHASSIS
CR14,24,6,7,14,15,16	1901-0040		-50	C1-3 CR1	C51 F2
CR3	1901-0028 (SR1358-9)	CH F1	1-16	DS1-9	J1,2
CR4	1906-0028 (MDA922-3)	L1-	-7	11	
CR5	1902-0040 (FZ1201)		-22	L1 Q1-16	S4
CR8-11, CR12, 13	1901-0535, 1901-0050	S1-		· R1-35	T1
Q1-3,22	1853-0015 (2N3563)	T1	~	S1,2 U1	U26,27 W1
Q4, 5, 10, 11	1854-0092 (2N3563)	U1	-25		L
Q6, 7, 16	1854-0215 (2N3904)				
Q12, 13	1854-0546 (2N5179)				
Q14, 15, 19, 21	1854-0071				
Q17, 18	1855-0081 (2N5245)				
		PWR (PIN)	PWR RTN PIN		
U1	1820-0736	VED(11)	16		
U2, 6, 8	1820-0982	-5.2V(1)	9		
U3 A	1820-1224 (ECL10216)	VCB(16), (1)	8		
U4	1820-1019	VEB(13)	3,11,15		
U5	1826-0139 (LM1458N)	VEC(4) +5V(8)			
U7 `	1820-1052 (ECL10125)	+5V(9)	16		
U9	1820-1251 (74LS196)	VED(11) +5V(14)	7		
U10	1820-0817 (MC10131)	-5.2V(8)	1, 16		
U11 .	1820-0633	-14V(16) -5.2V(4) +5V(9)	-		
U12, 16	1820-1166 (DM85L51)	+5V(16)	8		
U13	1820-0911 (74L192)	+5V(16)	8		
U14	1820-0491 (74145)	+5V(16)	8		
U15	1820-1155 (82S90)	+5V(14)	7		
U17	1820-1143 (8552)	+5V(14)	8		
U18	1820-0634	+5V(13), -5.2V(12), -14V(5)			
U19	1820-0174 (7404)	+5V(14)	7		
U20	1820-0054 (7400)	+5V(14)	7	, ·	
U21	1820-0661 (7432)	+5V(14)	• 7		
U22	1820-0328 (7402)	+5V(14)	7		
U23	1820-0077 (7474)	+5V(14)	7		
U24	1820-0537 (7413)	+5V(14)	7		
U25=	0960-0394	See schem.	See schem.		
U26	1826-0122 (7805)	See schem.	See schem.	4	
U27	1826-0215 (MC7905.2)	See schem.	See schem.		

P/O AZ DISPLA

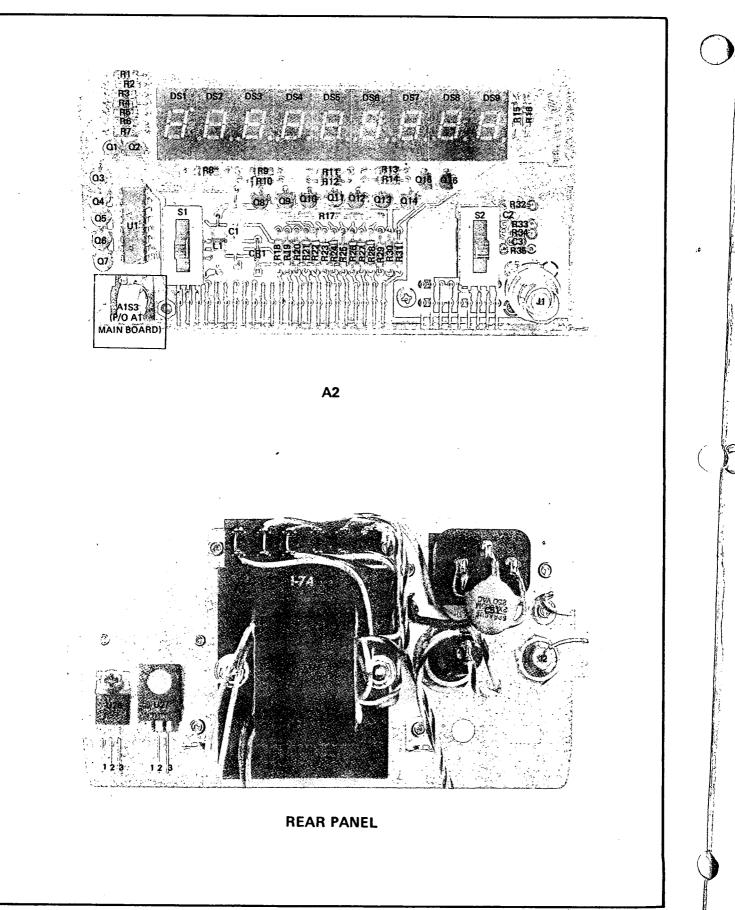
32 SZ


BNC

4

50 n/M n

c2 .01U


INPUT INP

** - 2

WHT-RED

ADDED FOR OPTION 001. ▲DELETED FOR OPTION 001.

Part of Figure 8-3. Part of A2 Display Board Schematic Diagram

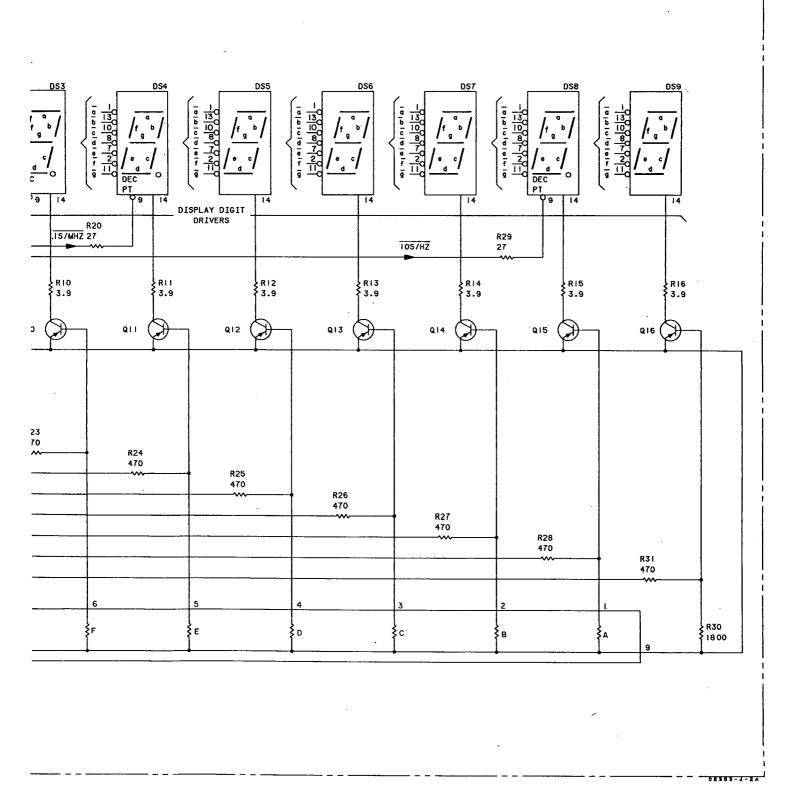
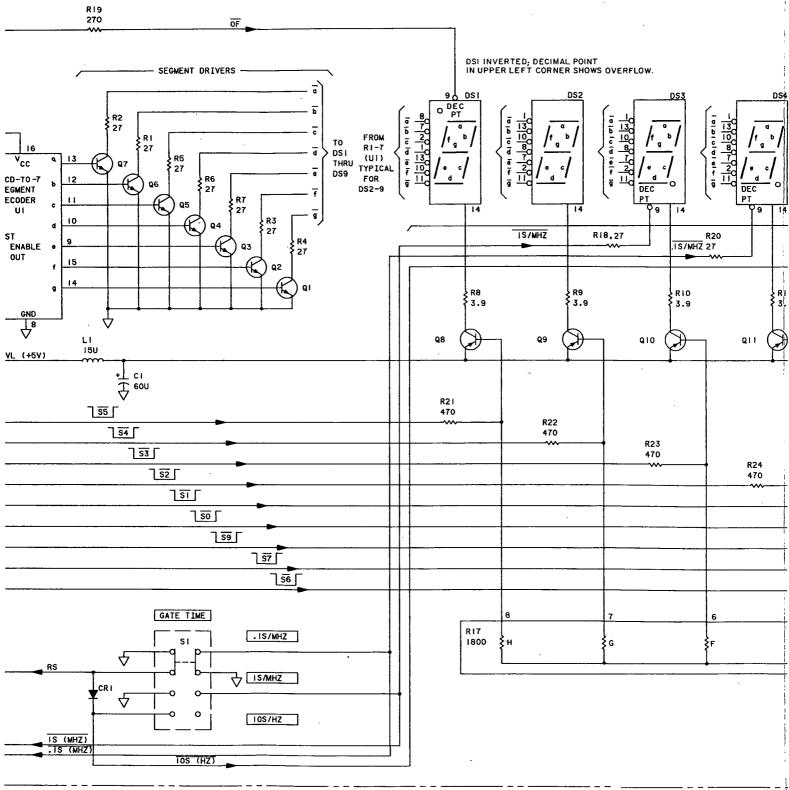



Figure 8-3. Part of A2 Display Board Schematic Diagram

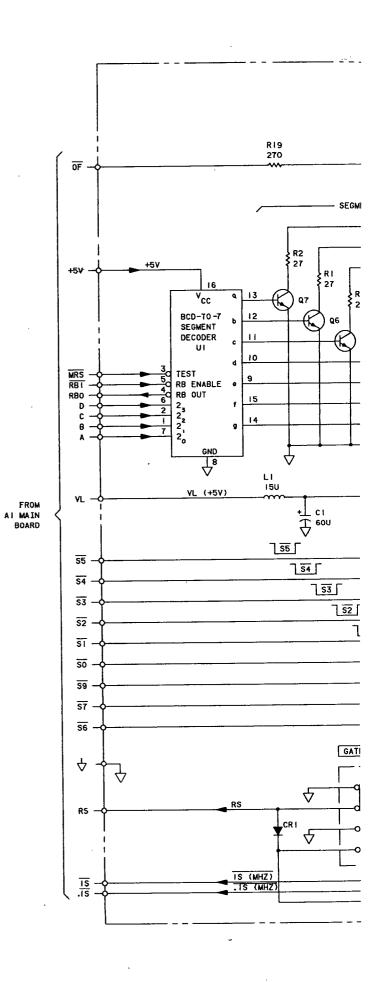
8–7

,

.

r	DR	IVE	DISPLAYED DIGIT VALUE				
Ι	f	g					
	0	1	0				
	1		1				
	1	0	2				
	1	0	3				
	0	0	4.				
-	0	0	5				
	0	0	6				
	1	1	7				
	0	0	8				
	0	0	9				
-	0	0	8				
e	er						
C	ox. 0 volts						

.


THIS ASSEMBLY ARE MBER TO ABBREVIATION

.

MPONENT.

REFERENCE DESIGNATIONS

A2
C1-3
CR1
DS1-9
J1
L1
Q1-16
R1-35
S1, 2
U1

3

/R

PIN

		AY I INP	BUS UT	TEST INPUT	DI	SPI	-AY	DI	GIT	DR	IVE	DISPLAYED DIGIT VALUE
A	в	С	D	MRS	а	b	С	d	е	f	g	
0	0	0	0	1	0	0	0	0	0	0	1	Ö
1	0	0	0	1	1	0	0	1	1	1		1
0	1	0	0	1	0	0	1	0	0	1	0	2
1	1	0	0	1	0	0	0	0	1	1	0	3
0	0	1	0	1	1	0	0	1	1	0	0	4
1	0	1	0	1	0	1	0	0	1	0	0	5
0	1	1	0	1	1	1	0	0	0	0	0	6
1	1	1	0	1	1	0	0	1	1	1	1	7
0	0	0	1	1	0	0	0	0	0	0	0	8
1	0	0	1	1	0	0	0	1	1	0	0	9
X	х	х	X	0	0	0	0	0	0	0	0	8
	X = Does not matter											
	1 = approx. +4V, 0 = approx. 0 volts											

NOTES

- 1. REFERENCE DESIGNATIONS WITHIN THIS ASSEMBLY ARE ABBREVIATED. ADD ASSEMBLY NUMBER TO ABBREVIATION FOR COMPLETE DESCRIPTION.
- 2. UNLESS OTHERWISE INDICATED: RESISTANCE IN OHMS; CAPACITANCE IN FARADS; INDUCTANCE IN HENRIES.
- 3. ASTERISK (*) INDICATES SELECTED COMPONENT.

REFERENCE DESIGNATIONS

C1-3 CR1 DS1-9 J1 L1

Q1-16 R1-35 S1, 2 U1

ACTIVE ELEMENTS						
REFERENCE DESIGNATIONS	HP PART NO.	PWR (PIN)	PWR RTN PIN			
CR1	1901-0040		[
DS1-9	1990-0452					
Q1-7	1854-0492					
Q8-11, 13-16	1853-0318					
U1	1820-0914	VL (16)	8			
	(9307)					

1.5 Let

}